Skip to main content
Log in

Comparative population genetics of Basilichthys microlepidotus (Atheriniformes: Atherinopsidae) and Trichomycterus areolatus (Siluriformes: Trichomycteridae) in north central Chile

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

To describe comparative population genetic structure of the Chilean silverside Basilichthys microlepidotus and the catfish Trichomycterus areolatus, four rivers and three sites within each river were investigated by the analysis of haplotype polymorphisms of the mitochondrial Control Region. For both species, analyses revealed significant differentiation among rivers and low differences within rivers. However, the species differ in haplotype composition; individuals of B. microlepidotus shared some haplotypes in all four rivers, while individuals of T. areolatus showed a different haplotype composition in most rivers. This difference may be explained by the different ecological features of the species. Assuming that both silversides and catfish were present before the separation of the rivers, B. microlepidotus migrated after river isolation, probably using coastal water, while T. areolatus has probably never migrated between these rivers. The long times that the studied rivers have been separated should be taken into account in future conservation plans for the freshwater fish of Chile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aceituno P (1988) On the functioning of the Southern Oscillation in the South American sector. Part I: Surface climate. Mon Wea Rev 116:505–524

    Article  Google Scholar 

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693

    Article  CAS  PubMed  Google Scholar 

  • Arratia G (1990) The South American Trichomycterinae (Teleostei: Siluriformes), a problematic group. In: Peters G, Hutterer R (eds) Vertebrates in the tropics. Museum Alexander Koenig, Bonn

    Google Scholar 

  • Arratia G (1997) Brazilian and Austral freshwater fish faunas of South America. A contrast. In: Ulrich H (ed) Tropical biodiversity and systematics. Museum Alexander Koenig, Bonn, pp 179–187

    Google Scholar 

  • Arratia G, Peñafort B, Menu-Marque S (1983) Peces de la región sureste de Los Andes y sus probables relaciones biogeográficas actuales. Deserta 7:48–108

    Google Scholar 

  • Azpelicueta M, Rubilar A (1998) A miocene nematogenys (Teleostei: Siluriformes: Nematogenyidae) from south-central Chile. J Vertebr Paleontol 18:475–483

    Article  Google Scholar 

  • Bamber R, Henderson P (1988) Pre-adaptive plasticity in atherinids and the estuarine seat of teleost evolution. J Fish Biol 33:17–23

    Article  Google Scholar 

  • Bandelt H, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37

    CAS  PubMed  Google Scholar 

  • Beerli P (2008) Migrate version 3.0: a maximum likelihood and Bayesian estimator of gene flow using the coalescent. Distributed over the Internet at http://popgen.scs.edu/migrate.html.

  • Beheregaray L, Sunnucks P, Briscoe DA (2002) A rapid fish radiation associated with the last sea-level changes in southern Brazil: the silverside Odontesthes perugiae complex. Proc R Soc Lond B Biol Sci 269:65–73

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996-2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR, Université de Montpellier II, Montpellier (France). 5000.

  • Bowen B, Muss A, Rocha L, Grant W (2006) Shallow mtDNA coalescence in Atlantic pygmy angelfishes (genus Centropyge) indicates a recent invasion from the Indian Ocean. J Hered 97:1

    Article  CAS  PubMed  Google Scholar 

  • Burridge C, Craw D, Jack D, King T, Waters J, Crandall K (2008) Does fish ecology predict dispersal across a river drainage divide? Evolution 62:1484–1499

    Article  PubMed  Google Scholar 

  • Charrier R, Pinto L, Rodríguez MP (2007) Tectonostratigraphic evolution of the Andean Orogen in Chile. In: Moreno T, Gibbons W (eds) The geology of Chile. The Geological Society, London, pp 21–114

    Google Scholar 

  • Charrier R, Farías M, Maksaev V (2009) Evolución tectónica, paleogeográfica y metalogénica durante el Cenozoico en los Andes de Chile norte y central e implicaciones para las regiones adyacentes de Bolivia y Argentina. In: Ramos V, Folguera A (eds) XVII Congreso Geológico Argentino. Sociedad Geológica Argentina, San Salvador de Jujuy

    Google Scholar 

  • Clapperton C (1994) The quaternary glaciation of Chile: a review. Rev Chil Hist Nat 67:369–383

    Google Scholar 

  • Corpet F (1988) Multiple sequence alignments with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  CAS  PubMed  Google Scholar 

  • de Pinna MC, Wosiacki W (2003) Family Trichomycteridae. (Pencil of parasitic catfishes). In: Reis RE, Kullander SO, Ferraris CJ Jr (eds) Check list of the freshwater fishes of South and Central America. EDIPUCRS, Porto Alegre

    Google Scholar 

  • DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473

    Article  CAS  Google Scholar 

  • Donaldson K, Wilson R (1999) Amphi-panamic geminates of snook (Percoidei: Centropomidae) provide a calibration of the divergence rate in the mitochondrial DNA control region of fishes. Mol Phylogenet Evol 13:208–213

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  • Duarte W, Feito R, Jara C, Moreno C, Orellana AE (1971) Ictiofauna del sistema hidrográfico del río Maipo. Bol Mus Nac Hist Nat (Chile) 32:227–268

    Google Scholar 

  • Dyer B (1998) Phylogenetic systematics and historical biogeography of the Neotropical silverside family Atherinopsidae (Teleostei, Atheriniformes). In: Malabarba LR, Reis RE, Vari RP, Lucena ZM, Lucena CAS (eds) Phylogeny and classification of neotropical fishes. EDIPUCRS, Porto Alegre, pp 519–536

    Google Scholar 

  • Dyer B (2000a) Revision sistemática de los pejerreyes de Chile (Teleostei, Atheriniformes). Estud Oceanol (Chile) 19:99–127

    Google Scholar 

  • Dyer B (2000b) Systematic review and biogeography of the freshwater fishes of Chile. Estud Oceanol (Chile) 19:77–98

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50, Online

    CAS  Google Scholar 

  • Farías M, Charrier R, Carretier S, Martinod J, Fock A, Campbell D, Cáceres J, Comte D (2008) Late Miocene high and rapid surface uplift and its erosional response in the Andes of central Chile (33º–35ºS). Tecton. 27: TC1005, doi:10.1029/2006TC002046.

  • Filatov DA (2002) ProSeq: a software for preparation and evolutionary analysis of DNA sequence data sets. Mol Ecol Notes 2:621–624

    Article  CAS  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  Google Scholar 

  • Giambiagi LB, Ramos VA, Godoy E, Alvarez PP, Orts S (2003) Cenozoic deformation and tectonic style of the Andes, between 33° and 34° south latitude. Tecton 22:1041. doi:10.1029/2001TC001354

    Article  Google Scholar 

  • Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: a review. Geol Soc Am Bull 112:1091–1105

    Article  Google Scholar 

  • Habit E, Dyer B, Vila I (2006) Estado de conocimiento de los peces dulceacuícolas de Chile. Gayana 70:100–113

    Google Scholar 

  • Harpending H (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600

    CAS  PubMed  Google Scholar 

  • Harpending H, Sherry S, Rogers A, Stoneking M (1993) The genetic structure of ancient human populations. Curr Anthropol 34:483

    Article  Google Scholar 

  • Harrod C, Griffiths D, McCarthy TK, Rosell R (2001) The Irish pollan. Coregonus autumnalis: options for its conservation. J Fish Biol 59:339–355

    Article  Google Scholar 

  • Jondeung A, Sangthong P, Zardoya R (2007) The complete mitochondrial DNA sequence of the Mekong giant catfish (Pangasianodon gigas), and the phylogenetic relationships among Siluriformes. Gene 387:49–57

    Article  CAS  PubMed  Google Scholar 

  • Koblmuller S, Sturmbauer C, Verheyen E, Meyer A, Salzburger W (2006) Mitochondrial phylogeny and phylogeography of East African squeaker catfishes (Siluriformes: Synodontis). BMC Evol Biol 6:49

    Article  PubMed  Google Scholar 

  • Lévêque C, Oberdorff T, Paugy D, Stiassny M, Tedesco P (2008) Global diversity of fish (Pisces) in freshwater. Hydrobiol 595:545–567

    Article  Google Scholar 

  • Mank J, Avise J (2006) Supertree analyses of the roles of viviparity and habitat in the evolution of atherinomorph fishes. J Evol Biol 19:734

    Article  CAS  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Ministerio Secretaría General de la Presidencia (2008) Aprueba y oficializa nómina para el tercer proceso de clasificación de especies según su estado de conservación. Decreto N°51 of 2008. Santiago, Chile.

  • Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamagushi M, Kawagushi A, Mauchi K, Shikai SM, Nishida M (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 26:121–138

    Article  CAS  PubMed  Google Scholar 

  • Moilanen A, Leathwick J, Elit J (2008) A method for spatial freshwater conservation prioritization. Freshw Biol 53:577–592

    Article  Google Scholar 

  • Perez-Losada M, Bond-Buckup G, Jara C, Crandall K (2004) Molecular systematics and biogeography of the Southern South American Freshwater “Crabs” Aegla (Decapoda: Anomura: Aeglidae) using multiple heuristic tree search approaches. Syst Biol 53:767–780

    Article  PubMed  Google Scholar 

  • Posada D, Crandall K (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A, Drummond A (2003) Tracer: a program for analysing results from Bayesian MCMC programs such as BEAST and MrBayes, Oxford, UK. http://evolve.zoo.ox.ac.uk/software.html.

  • Ramos VA, Cristallini EO, Pérez DJ (2002) The pampean flat-slab of the Central Andes. Journal of South American Earth Sciences 15:59–78

    Article  Google Scholar 

  • Ricciardi A, Rasmussen J (1999) Extinction rates of North American freshwater fauna. Conserv Biol: 1220–1222.

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Rubilar A (1994) Diversidad ictiológica en depósitos continendddtales miocenos de la Formación Cura-Mallín, Chile (37-39 S): implicancias paleográficas. Rev Geol Chile 21:3–29

    Google Scholar 

  • Ruzzante DE, Walde SJ, Cussac VE, Dalebout ML, Seibert J, Ortubay S, Habit E (2006) Phylogeography of the Percichthyidae (Pisces) in Patagonia: roles of orogeny, glaciation, and volcanism. Mol Ecol 15:2949–2968

    Article  CAS  PubMed  Google Scholar 

  • Saunders D, Meeuwig J, Vincent A (2002) Freshwater protected areas: strategies for conservation. Conserv Biol 16:30–41

    Article  Google Scholar 

  • Sievers H, Vega S (2000) Physical-chemical response of Valparaíso Bay to upwelling generated at Point Curaumilla and to El Niño Phenomenon. Rev Biol Mar Oceanogr 35:153–168

    Article  Google Scholar 

  • Smith M, Kelt D, Patton J (2001) Testing models of diversification in mice in the Abrothrix olivaceus/xanthorhinus complex in Chile and Argentina. Mol Ecol 10:397–405

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585

    CAS  PubMed  Google Scholar 

  • Thacker CE, Unmack PJ, Matsui L, Rifenbark N (2007) Comparative phylogeography of five sympatric Hypseleotris species (Teleostei: Eleotridae) in south-eastern Australia reveals a complex pattern of drainage basin exchanges with little congruence across species. J Biogeogr 34:1518–1533

    Article  Google Scholar 

  • Urzúa R, Díaz C, Karmy E, Moreno C (1977) Alimentación natural de Basilichthys australis en Tejas Verdes. Chile Biol Pesq (Chile) 9:45–61

    Google Scholar 

  • Victoriano PF, Ortiz JC, Benavides E, Adams BJ, Sites JW Jr (2008) Comparative phylogeography of codistributed species of Chilean Liolaemus (Squamata: Tropiduridae) from the central-southern Andean range. Mol Ecol 17:2397–2416

    Article  CAS  PubMed  Google Scholar 

  • Vila I, Fuentes L, Contreras M (1999) Peces límnicos de Chile. Bol Mus Nac Hist Nat (Chile) 48:61–75

    Google Scholar 

  • Vila I, Pardo R, Dyer B, Habit E (2006) Peces límnicos: diversidad, origen y estado de conservación. In: Vila I, Veloso A, Schlatter R, Ramírez C (eds) Macrófitas y vertebrados de los sistemas límnicos de Chile. Editorial Universitaria, Santiago de Chile, pp 73–102

    Google Scholar 

  • Wood C, Gross M (2008) Elemental conservation units: communicating extinction risk without dictating targets for protection. Conserv Biol 22:36–47

    Article  PubMed  Google Scholar 

  • Youngson A, Jordan W, Verspoor E, McGinnity P, Cross T, Ferguson A (2003) Management of salmonid fisheries in the British Isles: towards a practical approach based on population genetics. Fish Res 62:193–209

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the editor and the anonymous reviewers for their constructive comments and corrections to the manuscript. Thanks to R. Gauci, P. Acuña and M.C. Sabando for field assistance, M. Espinoza for lab assistance and to L Eaton for reviewing English version of the manuscript. This work was supported by Fondecyt 11060496 to DV. DV thanks also Grant PFB-23 (CONICYT, Chile) and Grant ICM P05-002. CQR thanks Master CONICYT Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Véliz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quezada-Romegialli, C., Fuentes, M. & Véliz, D. Comparative population genetics of Basilichthys microlepidotus (Atheriniformes: Atherinopsidae) and Trichomycterus areolatus (Siluriformes: Trichomycteridae) in north central Chile. Environ Biol Fish 89, 173–186 (2010). https://doi.org/10.1007/s10641-010-9710-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-010-9710-1

Keywords

Navigation