Skip to main content

Advertisement

Log in

Segregation of SE Pacific and SW Atlantic southern blue whiting stocks: integrating evidence from complementary otolith microchemistry and parasite assemblage approaches

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Southern blue whiting Micromesistius australis support one of the largest industrial fisheries in South America. Two main spawning/nursery grounds are known: one in the SW Atlantic Ocean (SWA), southwest from the Falkland (Malvinas) Islands; and other in the SE Pacific Ocean (SEP), south from the Taitao Peninsula. Juveniles originating from both grounds are believed to mix during migration and/or in feeding areas in the Scotia Sea. Previous efforts to distinguish stocks in this area have yielded contradictory results between genetics and otolith microchemical analyses. In the present work we revisited the null hypothesis of a single stock occurring in the broader SWA-SEP region by comparing and integrating results from different approaches: trace metals (Ca, Sr, Ba, Mg, Mn) and stable isotopes (δ13C, δ18O) in otolith cores, and parasite assemblage compositions in adults from SWA and SEP spawning grounds. We found significant differences in Sr:Ca, δ13C and δ18O mean ratios between spawning grounds. The best trace element discriminant model classified 83% of the samples. Each stable isotope discriminated >90% of the samples, while combining them into a bivariate discriminant model led to 100% classification success. Higher δ18O levels in the SWA samples agreed with lower mean temperature and higher ambient δ18O levels in that area. Parasite assemblage compositions also showed significant differences between grounds regarding the prevalence of Chondracanthus, Contracaecum, Hepatoxylon and Grillotia and the abundance of Diclidophora, Anisakis, Contracaecum, Hysterothylacium and Hepatoxylon. Parasite-based discriminant models supported 90–100% correct assignment of samples to capture location. Although preliminary due to limited sampling coverage, our results support the existence of at least two ecologically distinct sub-populations of southern blue whiting in South America. The joint use of otolith microchemistry and parasitological techniques showed to be a promising way to test hypotheses concerning ecological stocks in marine fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnew DJ (2002) Critical aspects of the Falkland Islands pelagic ecosystem: distribution, spawning and migration of pelagic animals in relation to oil exploration. Aquat Conserv: Mar Freshw Ecosyst 12:39–50

    Article  Google Scholar 

  • Agnew DJ, Marlow TR, Lorenzen K, Pompert J, Wakeford RC, Tingley GA (2003) Influence of Drake Passage oceanography on the parasitic infection of individual year-classes of southern blue whiting Micromesistius australis. Mar Ecol Prog Ser 254:281–291

    Article  Google Scholar 

  • Antonov JI, Locarnini RA, Boyer TP, Mishonov AV, Garcia HE (2006) World ocean atlas 2005, Volume 2. In: Levitus S (ed) Salinity. U.S. Government Printing Office, Washington

    Google Scholar 

  • Arkhipkin AI, Schuchert PC, Danyushevsky L (2009) Otolith chemistry reveals fine population structure and close affinity to the Pacific and Atlantic oceanic spawning grounds in the migratory southern blue whiting (Micromesistius australis australis). Fish Res 96:188–194

    Article  Google Scholar 

  • Bailey RS (1982) The population biology of blue whiting in the North Atlantic. Adv Mar Biol 19:257–355

    Article  Google Scholar 

  • Balbontin F, Uribe F, Bernal R, Braun M (2004) Descriptions of larvae of Merluccius australis, Macruronus magellanicus, and observations on a larva of Micromesistius australis from southern Chile (Pisces: Gadiformes). New Zeal J Mar Fresh 38:609–619

    Article  Google Scholar 

  • Barrera-Oro ER, Tomo AE (1988) New information on age and growth in length of Micromesistius australis, Norman 1937 (Pisces, Gadidae), in the South-West Atlantic. Polar Biol 8:341–351

    Article  Google Scholar 

  • Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583

    Article  PubMed  CAS  Google Scholar 

  • Cassia MC (2000) Age and growth of the southern blue whiting Micromesistius australis in the SW Atlantic. Sci Mar 64:269–274

    Article  Google Scholar 

  • Céspedes R, Adasme L, Gálvez P, Boré D, Tascheri R, Montenegro C, Bravo C, Robotham H, Zuleta A (1998) Análisis de la pesquería de merluza de tres aletas en la zona sur- austral. Informe final proyecto FIP 96-39. Instituto de Fomento Pesquero, Valparaíso

    Google Scholar 

  • Cherel Y, Waugh S, Hanchet S (1999) Albatross predation of juvenile southern blue whiting (Micromesistius australis) on the Campbell Plateau. New Zeal J Mar Fresh 33:437–441

    Article  Google Scholar 

  • Cohen DM, Inada T, Iwamoto T, Scialabba N (1990) FAO species catalogue. Vol. 10. Gadiform fishes of the world (Order Gadiformes). An annotated and illustrated catalogue of cods, hakes, grenadiers and other gadiform fishes known to date. FAO, Rome

    Google Scholar 

  • Dufour E, Hook TO, Patterson WP, Rutherford ES (2008) High-resolution isotope analysis of young alewife Alosa pseudoharengus otoliths: assessment of temporal resolution and reconstruction of habitat occupancy and thermal history. J Fish Biol 73:2434–2451

    Article  Google Scholar 

  • Ehrlich MD, Sánchez RP, de Ciechomski JD, Machinandiarena L, Pájaro M (1999) Ichthyoplankton composition, distribution and abundance on the southern patagonian shelf and adjacent waters. Documentos Científicos INIDEP 5:37–65

    Google Scholar 

  • Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD (2008) Otolith chemistry to describe movements and life history parameters of fishes: hypotheses, Assumptions, limitations and inferences. Oceanogr Mar Biol 46:297–330

    Article  Google Scholar 

  • Everitt BS, Hand DJ (1981) Finite mixture distributions. Chapman & Hall, London-New York

    Google Scholar 

  • FAO (2005) Fisheries Global Information System (FIGIS). http://www.fao.org/figis. Accessed September 22, 2009.

  • Figueroa DE, de Astarloa JMD, Martos P (1998) Mesopelagic fish distribution in the southwest Atlantic in relation to water masses. Deep-Sea Res Part 1 Oceanogr Res Pap 45:317–332

    Article  Google Scholar 

  • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188

    Google Scholar 

  • Fry B (2002) Stable isotopic indicators of habitat use by Mississippi River. Fish J Benthol Soc Am 21:676–685

    Article  Google Scholar 

  • Galleguillos R, Ferrada S, Canales-Aguirre C, Astete S, Lafon A (2009) Análisis de genética de poblaciones. In: Niklitschek E, Canales-Aguirre C, Ferrada S, Galleguillos R, George-Nascimento M, Hernández E, Herranz C, Lafon A, Roa R, Toledo P (eds) Unidades poblacionales de merluza de tres aletas (Micromesistius australis). Informe final FIP 2006-15. Universidad Austral de Chile (Centro Trapananda), Coyhaique, pp 34–49

    Google Scholar 

  • Gauldie RW, Thacker CE, Merrett NR (1994) Oxygen and carbon-isotope variation in the otoliths of Beryx splendens and Coryphaenoides profundicolus. Comp Biochem Physiol, part A 108:153–159

    Article  Google Scholar 

  • George-Nascimento M, Arancibia H (1994) La fauna parasitaria y la morfometría de la merluza austral Merluccius australis (Hutton) y su aporte a la distinción de unidades de stock. Biol Pesq 23:31–47

    Google Scholar 

  • George-Nascimento M (1996) Populations and assemblages of metazoan parasites in the hake Merluccius gayi (Guichenot) (Gadiformes: Merluccidae) from the Southeastern Pacific Ocean: stock implications. J Fish Biol 48:557–568

    Article  Google Scholar 

  • Gordon JH (1991) Biogeography of Gadoid Fishes. J Biogeogr 18(6):595–622

    Article  Google Scholar 

  • Høie H, Folkvord A, Otterlei E (2003) Effect of somatic and otolith growth rate on stable isotopic composition of early juvenile cod (Gadus morhua L) otoliths. J Exp Mar Biol Ecol 289:41–58

    Article  Google Scholar 

  • Inada T, Nakamura I (1975) A comparative study of two populations of the gadoid fish Micromesistius australis from the New Zealand and Patagonian-Falkland regions. Far Seas Fish Res Lab Bull 13:1–26

    Google Scholar 

  • Jónsdóttir IG, Campana SE, Marteinsdottir G (2006) Stock structure of Icelandic cod Gadus morhua L. based on otolith chemistry. J Fish Biol 69:136–150

    Article  CAS  Google Scholar 

  • Kalish JM (1991a) 13C and 180 isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar Ecol Prog Ser 75:191–203

    Article  Google Scholar 

  • Kalish JM (1991b) Oxygen and carbon stable isotopes in the otoliths of wild and laboratory-reared Australian salmon (Arripis trutta). Mar Biol 110:37–47

    Article  Google Scholar 

  • Kerr LA, Secor DH, Kraus RT (2007) Stable isotope (δ13C and δ18O) and Sr/Ca composition of otoliths as proxies for environmental salinity experienced by an estuarine fish. Mar Ecol Prog Ser 349:245–253

    Article  Google Scholar 

  • Lachenbruch PA, Mickey MA (1968) Estimation of error rates in discrimant analysis. Technometrics 10:1–10

    Article  Google Scholar 

  • LeGrande AN, Schmidt GA (2006) Global gridded data set of the oxygen isotopic composition in seawater. Geophys Res Lett 33:L12604

    Article  CAS  Google Scholar 

  • Lester RJG (1990) Reappraisal of the use of parasites for fish stock identification. Aust J Mar Freshwater Res 41:855–864

    Article  Google Scholar 

  • Lillo S, Céspedes R, Ojeda V, Diaz E, Muñoz Y, Saavedra A, Oliva J, Adasme L (2002) Evaluación hidroacústica de merluza de tres aletas. Informe Final, Proyecto FIP 2001-20. Instituto de Fomento Pesquero, Valparaíso

    Google Scholar 

  • Littel RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models. SAS Institute Inc, Cary

    Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2006) World ocean atlas 2005, Volume 1. In: Levitus S (ed) Temperature. U.S. Government Printing Office, Washington

    Google Scholar 

  • Macchi GJ, Pájaro M (1999) Features of the reproductive biology of the southern blue whiting (Micromesistius australis). In: Reproductive habitat, biology and acoustic biomass estimates of the southern blue whiting (Micromesistius australis) in the sea off southern patagonia. Documentos Científicos INIDEP 5:67–79

    Google Scholar 

  • MacKenzie K (2002) Parasites as biological tags in population studies of marine organisms: an update. Parasitology 124:153–163

    Article  Google Scholar 

  • MacKenzie K, Campbell N, Mattiucci S, Ramos P, Pinto AL, Abaunza P (2008) Parasites as biological tags for stock identification of Atlantic horse mackerel Trachurus trachurus. Fish Res 89:136–145

    Article  Google Scholar 

  • Norman, JR (1937) Coast fishes. Part II The Patagonian region. Discovery Rep 16:1–150

    Google Scholar 

  • Nyegaard M, Arkhipkin A, Brickle P (2004) Variation in the diet of Genypterus blacodes (Ophidiidae) around the Falkland Islands. J Fish Biol 65:666–682

    Article  Google Scholar 

  • Payá I (1992) The diet of Patagonian hake Merluccius australis polylepis and its daily ration of Patagonian grenadier Macruronus magellanicus. Afr J Mar Sci 12:753–760

    Google Scholar 

  • Payá I, Rubilar P, Pool H, Céspedes R, Reyes H, Ehrhardt N, Adasme L, Hidalgo H (2002) Evaluación de merluza de cola y merluza de tres aletas. Informe final proyecto FIP 2000-15. IFOP, Valparaiso

    Google Scholar 

  • Perrota RG (1982) Distribución y estructura poblacional de la polaca (Micromesistius australis). Revista de Investigación y Desarrollo Pesquero INIDEP 3:35–50

    Google Scholar 

  • Pickard GL (1971) Some Physical oceanographic features of inlets of Chile. J Fish Res Bd Canada 28:1077–1106

    Google Scholar 

  • Radtke RL, Lenz P, Showers W, Moksness E (1996) Environmental information stored in otoliths: insights from stable isotopes. Mar Biol 127:161–170

    Article  Google Scholar 

  • Risso A (1826) Histoire naturelle des principales productions de l'Europe méridionale et particuliérement de celles des environs de Nice et des Alpes maritimes vol. III. F.G. Levrault, Paris et Strasbourg

  • Roa-Ureta R (2009) Parámetros clave de la historia de vida. In: Niklitschek E, Canales-Aguirre C, Ferrada S, Galleguillos R, George-Nascimento M, Hernández E, Herranz C, Lafon A, Roa R, Toledo P (eds) Unidades poblacionales de merluza de tres aletas (Micromesistius australis). Informe final FIP 2006-15. Universidad Austral de Chile (Centro Trapananda), Coyhaique, pp 55–69

    Google Scholar 

  • Rooker JR, Secor DH, De Metrio G, Schloesser R, Block BA, Neilson JD (2008) Natal homing and connectivity in Atlantic bluefin tuna populations. Science 322:742–744

    Article  PubMed  CAS  Google Scholar 

  • Rooker JR, Zdanowicz VS, Secor DH (2001) Chemistry of tuna otoliths: assessment of base composition and postmortem handling effects. Mar Biol 139:35–43

    Article  CAS  Google Scholar 

  • Ryan AW, Smith PJ, Mork J (2002) Genetic differentiation between the New Zealand and Falkland Islands populations of southern blue whiting Micromesistius australis. New Zeal J Mar Fresh 36:637–643

    Article  Google Scholar 

  • Saavedra A, Correa V, Céspedes R, Ojeda CV, Adasme L, Diaz E, Oliva J, Rojas P (2007) Evaluación hidroacústica stock parental merluza de tres aletas en su unidad de pesquería, Año 2005. Instituto de Fomento Pesquero, Valparaíso, Chile

    Google Scholar 

  • Sánchez R, Ciechomzki J, Acha E (1986) Estudios sobre la reproducción y fecundidad de la polaca (Micromesistius australis Norman, 1937) en el mar Argentino. Rev Invest Des Pesq INIDEP 6:21–43

    Google Scholar 

  • Searle SR (1987) Linear models for unbalanced data. Wiley, New York

    Google Scholar 

  • Secor DH, Dean JM, Laban EH (1992) Otolith removal and preparation for microestructural examination. D. K. Stevenson & S. E. Campana (eds). Can Spec Publ Fish Aquat Sci 117.

  • Secor DH (2010) Is otolith science transformative? New views on fish migration. Env Biol Fishes. doi:10.1007/s10641-010-9683-0

  • Shaw PW (2003) Testing for genetic subdivision of the southern blue whiting (Micromesistius australis). Fisheries Department, Falkland Islands Government, Stanley, Falkland Islands

    Google Scholar 

  • Shaw PW (2005) Using mitochondrial DNAmarkers to test for differences between nuclear and mitochondrial genome genetic subdivision of the southern blue whiting (Micromesistius australis). Fisheries Department, Falkland Islands Government, Stanley, Falkland Islands

    Google Scholar 

  • Sherwood GD, Rose GA (2003) Influence of swimming form on otolith delta C-13 in marine fish. Mar Ecol Prog Ser 258:283–289

    Article  CAS  Google Scholar 

  • Silva N, Palma S (2000) Avances en el conocimiento oceanográfico de las aguas interiores chilenas. Puerto Montt a Cabo de Hornos, CONA (Comité Oceanográfico Nacional), Valparaíso, Chile

    Google Scholar 

  • Solomon CT, Weber PK, Cech JJ, Ingram BL, Conrad ME, Machavaram MV, Pogodina AR, Franklin RL (2006) Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Can J Fish Aquat Sci 63:79–89

    Article  CAS  Google Scholar 

  • Thorrold SR, Campana SE, Jones CM, Swart PK (1997) Factors determining delta C-13 and delta O-18 fractionation in aragonitic otoliths of marine fish. Geochim Cosmochim Ac 61:2909–2919

    Article  CAS  Google Scholar 

  • Wiecaszek B (1988) Morphometry of southern blue whiting Micromesistius australis (Norman, 1937) from the region of Burdwood Bank. Acta Ichthyol Piscat 18(2):3–18

    Google Scholar 

  • Williams HH, Mackenzie K, McCarthy AM (1992) Parasites as biological indicators of the population biology, migrations, diet and phylogenetics of fish. Rev Fish Biol Fish 2:144–176

    Article  Google Scholar 

  • Wöhler OC, Cordo HD, Hansen J, Cassia C (2001) Análisis secuencial de la población de la polaca (Micromesistius australis) en el período 1987–1997, ajustado con valores de rendimiento por unidad de esfuerzo de pesqueros comerciales. Revista de Investigación y Desarrollo Pesquero INIDEP 14:37–56

    Google Scholar 

  • Wöhler OC, Hansen JE, Cassia MC, Cordo HD (2007) Análisis secuencial de la población de la polaca (Micromesistius australis) en el período 1987–1997, ajustado con valores de rendimiento por unidad de esfuerzo de pesqueros comerciales. INIDEP, Argentina, Mar del Plata, Argentina. http://hdl.handle.net/1834/2526.

  • Yoshinaga J, Nakama A, Morita M, Edmonds JS (2000) Fish otolith reference material for quality assurance of chemical analyses. Mar Chem 69:91–97

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Chilean Fisheries Research Fund (FIP) grant no. 2006-15. Samples from the Southwest Atlantic ground were kindly provided by Alexander Arkhipkin from the Falkland Islands Government Fisheries Department. Rebeca Wingate provided valuable help with otolith samples preparation for microchemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin J. Niklitschek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niklitschek, E.J., Secor, D.H., Toledo, P. et al. Segregation of SE Pacific and SW Atlantic southern blue whiting stocks: integrating evidence from complementary otolith microchemistry and parasite assemblage approaches. Environ Biol Fish 89, 399–413 (2010). https://doi.org/10.1007/s10641-010-9695-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-010-9695-9

Keywords

Navigation