Skip to main content

Advertisement

Log in

New NO- and H2S-releasing doxorubicins as targeted therapy against chemoresistance in castration-resistant prostate cancer: in vitro and in vivo evaluations

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Chemotherapy for castration-resistant prostate cancer (CRPC) is only temporarily effective due to the onset of chemoresistance. We investigated the efficacy of NO- and H2S-releasing doxorubicins (NitDox and H2SDox) in overcoming drug resistance and evaluated their safety. New and innovative NO- and H2S-releasing doxorubicins (NitDox and H2SDox) showed a good intracellular accumulation and high cytotoxic activity in vitro in an androgen-independent and doxorubicin-resistant DU-145 prostate cancer cell line. Nude mice were subcutaneously injected with 4*106 DU-145 cells and treated once a week for 3 weeks with 5 mg/kg doxorubicin, NitDox, H2SDox or vehicle, i.p. Animal weight, tumor volume, intra-tumoral drug accumulation, apoptosis and the presence of nitrotyrosine and sulfhydryl (SH) groups within the tumor, were evaluated. Cardiotoxicity was assessed by measuring troponin plasma levels and the left ventricular wall thickness. In vivo, NitDox and H2SDox accumulated inside the tumors, significantly reduced tumor volumes by 60%, increased the percentage of apoptotic cells in both the inner and the outer parts of the tumors and the presence of nitrotyrosine and SH groups. Doxorubicin treatment was associated with reduced body weight and cardiotoxicity. On the contrary, NitDox and H2SDox were well tolerated and had a better safety profile. Combining efficacy with reduced cardiovascular side effects, NitDox and H2SDox are promising novel therapeutic agents for reversing chemoresistance in CRCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3: High-throughput screening of cancer cell lines treated with NitDox
Fig. 4: High-throughput screening of cancer cell lines treated with H2SDox
Fig. 5: Cell viability, necrotic cell death, apoptosis and drug accumulation in DU-145 cells
Fig. 6: Survival, body weight curves and tumor volumes
Fig. 7: Intratumoral drug uptake
Fig. 8: Percentage of apoptotic cells in tumors
Fig. 9: Nitrotyrosine residues and SH group detection in tumors
Fig. 10: Left ventricular wall thickness

Similar content being viewed by others

References

  1. Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, Chen Z, Beroukhim R, Wang H, Lupien M, Wu T, Regan MM, Meyer CA, Carroll JS, Manrai AK, Jänne OA, Balk SP, Mehra R, Han B, Chinnaiyan AM, Rubin MA, True L, Fiorentino M, Fiore C, Loda M, Kantoff PW, Liu XS, Brown M (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138(2):245–256. https://doi.org/10.1016/j.cell.2009.04.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nakazawa M, Paller C, Kyprianou N (2017) Mechanism of therapeutic resistance in prostate cancer. Curr Oncol Rep 19(2):13. https://doi.org/10.1007/s11912-017-0568-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Castro E, Romero N, Olmos D (2014) State of the art treatment in castration resistant prostate cancer. EMJ Oncol 2:100–105 https://www.emjreviews.com/oncology/article/re-state-art-treatment-castration-resistant-prostate-cancer-forward-past/re-state-of-the-art-treatment-in-castration-resistant-prostate-cancer-forward-to-the-past-again/

    Google Scholar 

  4. Harris WP, Mostaghel EA, Nelson PS, Montgomery B (2009) Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol 6:76–85. https://doi.org/10.1038/ncpuro1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mohler JL, Kantoff PW, Armstrong AJ, Bahnson RR, Cohen M, D'Amico AV, Eastham JA, Enke CA, Farrington TA, Higano CS, Horwitz EM, Kane CJ, Kawachi MH, Kuettel M, Kuzel TM, Lee RJ, Malcolm AW, Miller D, Plimack ER, Pow-Sang JM, Raben D, Richey S, Roach M 3rd, Rohren E, Rosenfeld S, Schaeffer E, Small EJ, Sonpavde G, Srinivas S, Stein C, Strope SA, Tward J, Shead DA, Ho M (2014) National Comprehensive Cancer Network. Prostate cancer, version 2.2014. J Natl Compr Cancer Netw 12(5):686–718 http://www.jnccn.org/content/12/5/686.abstract?utm_source=TrendMD&utm_medium=cpc&utm_campaign=JNCCN_TrendMD_0

    Article  CAS  Google Scholar 

  6. Thadani-Mulero M, Nanus DM, Giannakakou P (2012) Androgen receptor on the move: boarding the microtubule expressway to the nucleus. Cancer Res 72:4611–4615. https://doi.org/10.1158/0008-5472.CAN-12-0783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhu ML, Horbinski CM, Garzotto M, Qian DZ, Beer TM, Kyprianou N (2010) Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Res 70:7992–8002. https://doi.org/10.1158/0008-5472.CAN-10-0585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buttigliero C, Tucci M, Bertaglia V, Vignani F, Bironzo P, Di Maio M, Scagliotti GV (2015) Understanding and overcoming the mechanisms of primary and acquired resistance to abiraterone and enzalutamide in castration resistant prostate cancer. Cancer Treat Rev 41:884–892. https://doi.org/10.1016/j.ctrv.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  9. Torti FM, Aston D, Lum BL, Kohler M, Williams R, Spaulding JT, Shortliffe L, Freiha FS (1983) Weekly doxorubicin in endocrine-refractory carcinoma of the prostate. J Clin Oncol 1(8):477–482. https://doi.org/10.1200/JCO.1983.1.8.477

    Article  CAS  PubMed  Google Scholar 

  10. Sella A, Kilbourn R, Amato R, Bui C, Zukiwski AA, Ellerhorst J, Logothetis CJ (1994) Phase II study of ketoconazole combined with weekly doxorubicin in patients with androgen-independent prostate cancer. J Clin Oncol 12(4):683–688. https://doi.org/10.1200/JCO.1994.12.4.683

    Article  CAS  PubMed  Google Scholar 

  11. Das A, Durrant D, Mitchell C, Mayton E, Hoke NN, Salloum FN, Park MA, Qureshi I, Lee R, Dent P, Kukreja RC (2010) Sildenafil increases chemotherapeutic efficacy of doxorubicin in prostate cancer and ameliorates cardiac dysfunction. Proc Natl Acad Sci U S A 107(42):18202–18207. https://doi.org/10.1073/pnas.1006965107

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shankaranarayanan JS, Kanwar JR, Al-Juhaishi AJ, Kanwar RK (2016) Doxorubicin conjugated to immunomodulatory anticancer Lactoferrin displays improved cytotoxicity overcoming prostate Cancer chemo resistance and inhibits tumour development in TRAMP mice. Sci Rep 6:32062. https://doi.org/10.1038/srep32062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Riganti C, Rolando B, Kopecka J, Campia I, Chegaev K, Lazzarato L, Federico A, Fruttero R, Ghigo D (2013) Mitochondrial-targeting nitrooxy-doxorubicin: a new approach to overcome drug resistance. Mol Pharm 10(1):161–174. https://doi.org/10.1021/mp300311b

    Article  CAS  PubMed  Google Scholar 

  14. Chegaev K, Riganti C, Lazzarato L, Rolando B, Guglielmo S, Campia I, Fruttero R, Bosia A, Gasco A (2011) Nitric oxide donor – doxorubicin conjugates accumulate into doxorubicin resistant human colon cancer cells inducing cytotoxicity. ACS Med Chem Lett 2(7):494–497. https://doi.org/10.1021/ml100302t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gazzano E, Chegaev K, Rolando B, Blangetti M, Annaratone L, Ghigo D, Fruttero R, Riganti C (2016) Overcoming multidrug resistance by targeting mitochondria with NO-donating doxorubicins. Bioorg Med Chem 24(5):967–975. https://doi.org/10.1016/j.bmc.2016.01.021

    Article  CAS  PubMed  Google Scholar 

  16. Chegaev K, Rolando B, Cortese D, Gazzano E, Buondonno I, Lazzarato L, Fanelli M, Hattinger CM, Serra M, Riganti C, Fruttero R, Ghigo D, Gasco A (2016) H2S-donating Doxorubicins may overcome cardiotoxicity and multidrug resistance. J Med Chem 59(10):4881–4889. https://doi.org/10.1021/acs.jmedchem.6b00184

    Article  CAS  PubMed  Google Scholar 

  17. Lundberg JO, Gladwin MT, Weitzberg E (2015) Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov 14(9):623–641. https://doi.org/10.1038/nrd4623

    Article  CAS  PubMed  Google Scholar 

  18. Shen Y, Shen Z, Luo S, Guo W, Zhu YZ (2015) The Cardioprotective effects of hydrogen sulfide in heart diseases: from molecular mechanisms to therapeutic potential. Oxidative Med Cell Longev 2015:925167–925113. https://doi.org/10.1155/2015/925167

    Article  Google Scholar 

  19. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56(2):185–229. https://doi.org/10.1124/pr.56.2.6

    Article  CAS  PubMed  Google Scholar 

  20. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, Yeh ET (2012) Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18(11):1639–1642. https://doi.org/10.1038/nm.2919

    Article  CAS  PubMed  Google Scholar 

  21. Wong CC, Sagineedu SR, Sumon SH, Sidik SM, Phillips R, Lajis NH, Stanslas J. NCI in vitro and in silico anticancer screen, cell cycle pertubation and apoptosis-inducing potential of new acylated, benzylidene and isopropylidene derivatives of andrographolide. Environ Toxicol Pharmacol 38(2):489–501. https://doi.org/10.1016/j.etap.2014.07.016

    Article  CAS  Google Scholar 

  22. Riganti C, Miraglia E, Viarisio D, Costamagna C, Pescarmona G, Ghigo D, Bosia A (2005) Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res 65(2):516–525 http://cancerres.aacrjournals.org/content/65/2/516.long

    CAS  PubMed  Google Scholar 

  23. Samaha HS, Kelloff GJ, Steele V, Rao CV, Reddy BS (1997) Modulation of apoptosis by Sulindac, curcumin, Phenylethyl-3-methylcaffeate, and 6-Phenyihexyl Isothiocyanate: apoptotic index as a biomarker in colon cancer chemoprevention and promotion. Cancer Res 57:1301–1305 http://cancerres.aacrjournals.org/content/57/7/1301.long

    CAS  PubMed  Google Scholar 

  24. Cinci L, Luceri C, Bigagli E, Carboni I, Paccosi S, Parenti A, Guasti D, Coronnello M (2016) Development and characterization of an in vitro model of colorectal adenocarcinoma with MDR phenotype. Cancer Med 5(6):1279–1291. https://doi.org/10.1002/cam4.694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baggetto LG, Dong M, Bernaud J, Espinosa L, Rigal D, Bonvallet R, Marthinet E (1998) In vitro and in vivo reversal of cancer cell multidrug resistance by the semi-synthetic antibiotic tiamulin. Biochem Pharmacol 1;56(9):1219–1228 https://www.sciencedirect.com/science/article/pii/S0006295298002299?via%3Dihub

    Article  Google Scholar 

  26. Alessandri G, Filippeschi S, Sinibaldi P, Mornet F, Passera P, Spreafico F, Cappa PM, Gullino PM (1987) Influence of gangliosides on primary and metastatic neoplastic growth in human and murine cells. Cancer Res 47:4243–4247 http://cancerres.aacrjournals.org/content/47/16/4243.long

    CAS  PubMed  Google Scholar 

  27. Adams CWM (1956) A stricter interpretation of the ferric ferricyanide reaction with particular reference to the demonstration of protein-bound sulphydryl and di-sulphide. J Histochem Cytochem 4(1):23–35. https://doi.org/10.1177/4.1.23

    Article  CAS  PubMed  Google Scholar 

  28. Petrioli R, Fiaschi AI, Francini E, Pascucci A, Francini G (2008) The role of doxorubicin and epirubicin in the treatment of patients with metastatic hormone-refractory prostate cancer. Cancer Treat Rev 34:710–718. https://doi.org/10.1016/j.ctrv.2008.05.004

    Article  CAS  PubMed  Google Scholar 

  29. Bhangal G, Halford S, Wang J, Roylance R, Shah R, Waxman J (2000) Expression of the multidrug resistance gene in human prostate cancer. Urol Oncol 5(3):118–121 https://www.sciencedirect.com/science/article/pii/S1078143999000551?via%3Dihub

    Article  CAS  Google Scholar 

  30. Sharom FJ (2011) Multidrug resistance protein (P-glycoprotein; MDR1). Biochemical Society Essays Biochem 50:161–178 https://pdfs.semanticscholar.org/d6eb/ca84e778bbbd34fcaf069db9d54c65f99c9b.pdf

    Article  CAS  Google Scholar 

  31. Wu D, Liu L, Yan X, Wang C, Wang Y, Han K, Lin S, Gan Z, Min D (2017) Pleiotrophin promotes chemoresistance to doxorubicin in osteosarcoma by upregulating P-glycoprotein. Oncotarget 8(38):63857–63870. https://doi.org/10.18632/oncotarget.19148

    Article  PubMed  PubMed Central  Google Scholar 

  32. Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, Criscitiello C, Goldhirsch A, Cipolla C, Roila F, ESMO Guidelines Working Group (2012) Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines. Ann Oncol Suppl 7:155–66. https://doi.org/10.1093/annonc/mds293

    Article  Google Scholar 

  33. Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7(2):27–31. https://doi.org/10.4103/0976-0105.177703

    Article  PubMed  PubMed Central  Google Scholar 

  34. Patel KJ, Tannock IF (2009) The influence of P-glycoprotein expression and its inhibitors on the distribution of doxorubicin in breast tumors. BMC Cancer 9:356. https://doi.org/10.1186/1471-2407-9-356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chegaev K, Fraix A, Gazzano E, Abd-Ellatef GE, Blangetti M, Rolando B, Conoci S, Riganti C, Fruttero R, Gasco A, Sortino S (2017) Light-regulated NO release as a novel strategy to overcome doxorubicin multidrug resistance. ACS Med Chem Lett 8(3):361–365. https://doi.org/10.1021/acsmedchemlett.7b00016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM (2017) Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther 31(1):63–75. https://doi.org/10.1007/s10557-016-6711-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Auner HW, Tinchon C, Linkesch W, Tiran A, Quehenberger F, Link H, Sill H (2003) Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann Haematol 82:218–222. https://doi.org/10.1007/s00277-003-0615-3

    Article  CAS  Google Scholar 

  38. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, Civelli M, Peccatori F, Martinelli G, Fiorentini C, Cipolla CM (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circ 109:2749–2754. https://doi.org/10.1161/01.CIR.0000130926.51766.CC

    Article  CAS  Google Scholar 

  39. Tian S, Hirshfield KM, Jabbour SK, Toppmeyer D, Haffty BG, Khan AJ, Goyal S (2014) Serum biomarkers for the detection of cardiac toxicity after chemotherapy and radiation therapy in breast cancer patients. Front Oncol 4:277. https://doi.org/10.3389/fonc.2014.00277

    Article  PubMed  PubMed Central  Google Scholar 

  40. Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339:900–905. https://doi.org/10.1056/NEJM199809243391307

    Article  CAS  PubMed  Google Scholar 

  41. Jones SP, Bolli R (2006) The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 40(1):16–23. https://doi.org/10.1016/j.yjmcc.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  42. Xi L, Zhu SG, Das A, Chen Q, Durrant D, Hobbs DC, Lesnefsky EJ, Kukreja RC (2012) Dietary inorganic nitrate alleviates doxorubicin cardiotoxicity: mechanisms and implications. Nitric Oxide 26(4):274–284. https://doi.org/10.1016/j.niox.2012.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu SG, Kukreja RC, Das A, Chen Q, Lesnefsky EJ, Xi L (2011) Dietary nitrate supplementation protects against doxorubicin-induced cardiomyopathy by improving mitochondrial function. J Am Coll Cardiol 57(21):2181–2189. https://doi.org/10.1016/j.jacc.2011.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Su YW, Liang C, Jin HF, Tang XY, Han W, Chai LJ, Zhang CY, Geng B, Tang CS, Du JB (2009) Hydrogen sulfide regulates cardiac function and structure in adriamycin-induced cardiomyopathy. Circ J 73(4):741–749 https://www.jstage.jst.go.jp/article/circj/73/4/73_CJ-08-0636/_article

    Article  CAS  Google Scholar 

  45. Lefer DJ (2007) A new gaseous signaling molecule emerges: cardioprotective role of hydrogen sulfide. Proc Natl Acad Sci U S A 04(46):17907–17908. https://doi.org/10.1073/pnas.0709010104

    Article  Google Scholar 

  46. Liu MH, Lin XL, Zhang Y, He J, Tan TP, Wu SJ, Liu J, Tian W, Chen L, Yu S, Li J, Yuan C (2015) Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibiting reactive oxygen species-activated extracellular signal-regulated kinase 1/2 in H9c2 cardiac myocytes. Mol Med Rep 12:6841–6848. https://doi.org/10.3892/mmr.2015.4234

    Article  CAS  PubMed  Google Scholar 

  47. Guo R, Lin J, Xu W, Shen N, Mo L, Zhang C, Feng J (2013) Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibition of the p38 MAPK pathway in H9c2 cells. Int J Mol Med 31:644–650. https://doi.org/10.3892/ijmm.2013.1246

    Article  CAS  PubMed  Google Scholar 

  48. Wang XY, Yang CT, Zheng DD, Mo LQ, Lan AP, Yang ZL, Hu F, Chen PX, Liao XX, Feng JQ (2012) Hydrogen sulfide protects H9c2 cells against doxorubicin-induced cardiotoxicity through inhibition of endoplasmic reticulum stress. Mol Cell Biochem 363:419–426. https://doi.org/10.1007/s11010-011-1194-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. Piero Dolara for critical reading of the manuscript and his useful suggestions.

Funding

This work was supported by Ministry of Education, University and Research (MIUR) by the grant FIRB 2012 code RBFR12SOQ1: “Optimization of oncology therapy: novel drugs affecting multidrug resistance”; Italian Association for Cancer Research (IG15232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Cinci.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All animal care and experimental protocols were approved by the Italian Ministry of Health with authorization number 49/2016-PR 21/01/2016.

Electronic supplementary material

Supplementary Figure 1

GI50 of cancer cell lines treated with doxorubicin. GI50 was calculated as reported in the Materials and Methods section, on 60 cancer cell lines of the NCI panel, after 48 h treatment with 10−4 to 10−8 M doxorubicin (here indicated as compound 123,127). (GIF 20 kb)

High resolution image (TIFF 324 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bigagli, E., Luceri, C., De Angioletti, M. et al. New NO- and H2S-releasing doxorubicins as targeted therapy against chemoresistance in castration-resistant prostate cancer: in vitro and in vivo evaluations. Invest New Drugs 36, 985–998 (2018). https://doi.org/10.1007/s10637-018-0590-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-018-0590-0

Keywords

Navigation