Skip to main content

Advertisement

Log in

AN-7, a butyric acid prodrug, sensitizes cutaneous T-cell lymphoma cell lines to doxorubicin via inhibition of DNA double strand breaks repair

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

We previously found that the novel histone deacetylase inhibitor (HDACI) butyroyloxymethyl diethylphosphate (AN-7) had greater selectivity against cutaneous T-cell lymphoma (CTCL) than SAHA. AN-7 synergizes with doxorubicin (Dox), an anthracycline antibiotic that induces DNA breaks. This study aimed to elucidate the mechanism underlying the effect of AN-7 on Dox-induced double-strand DNA breaks (DSBs) in CTCL, MyLa and Hut78 cell lines. The following markers/assays were employed: comet assay; western blot of γH2AX and p-KAP1; immunofluorescence of γH2AX nuclear foci; Western blot of repair protein; quantification of DSBs-repair through homologous recombination. DSB induction by Dox was evidenced by an increase in DSB markers, and DSBs-repair, by their subsequent decrease. The addition of AN-7 slightly increased Dox induction of DSBs in MyLa cells with no effect in Hut78 cells. AN-7 inhibited the repair of Dox-induced DSBs, with a more robust effect in Hut78. Treatment with AN-7 followed by Dox reduced the expression of DSB-repair proteins, with direct interference of AN-7 with the homologous recombination repair. AN-7 sensitizes CTCL cell lines to Dox, and when combined with Dox, sustains unrepaired DSBs by suppressing repair protein expression. Our data provide a mechanistic rationale for combining AN-7 with Dox or other DSB inducers as a therapeutic modality in CTCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bagherani N, Smoller BR (2016) An overview of cutaneous t cell lymphomas. F1000Res 5. doi:10.12688/f1000research.8829.1

  2. Sidiropoulos KG, Martinez-Escala ME, Yelamos O, Guitart J, Sidiropoulos M (2015) Primary cutaneous t-cell lymphomas: a review. J Clin Pathol 68:1003–1010

    Article  CAS  PubMed  Google Scholar 

  3. Wilcox RA (2016) Cutaneous t-cell lymphoma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol 91:151–165

    Article  CAS  PubMed  Google Scholar 

  4. Jawed SI, Myskowski PL, Horwitz S, Moskowitz A, Querfeld C (2014) Primary cutaneous t-cell lymphoma (mycosis fungoides and sezary syndrome): Part ii. Prognosis, management, and future directions. J Am Acad Dermatol 70:223 e221–223 e217 quiz 240-222

    Article  Google Scholar 

  5. Hughes CF, Newland K, McCormack C, Lade S, Prince HM (2016) Mycosis fungoides and sezary syndrome: current challenges in assessment, management and prognostic markers. Australas J Dermatol 57:182–191

    Article  PubMed  Google Scholar 

  6. Guenova E, Hoetzenecker W, Rozati S, Levesque MP, Dummer R, Cozzio A (2014) Novel therapies for cutaneous t-cell lymphoma: what does the future hold? Expert Opin Investig Drugs 23:457–467

    Article  CAS  PubMed  Google Scholar 

  7. Kun L, Hernandez-Ilizaliturri FJ, Reddy NM (2014) Novel therapeutic strategies for cutaneous t-cell lymphoma in advanced stages. Semin Hematol 51:35–41

    Article  CAS  PubMed  Google Scholar 

  8. Samadder P, Aithal R, Belan O, Krejci L (2016) Cancer targetases: DSB repair as a pharmacological target. Pharmacol Ther 161:111–131

    Article  CAS  PubMed  Google Scholar 

  9. Srivastava M, Raghavan SC (2015) DNA double-strand break repair inhibitors as cancer therapeutics. Chem Biol 22:17–29

    Article  CAS  PubMed  Google Scholar 

  10. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745

    Article  CAS  PubMed  Google Scholar 

  11. Hartlerode AJ, Scully R (2009) Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J 423:157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang K, Guo R, Xu D (2016) Non-homologous end joining: advances and frontiers. Acta Biochim Biophys Sin Shanghai 48:632–640

    Article  CAS  PubMed  Google Scholar 

  13. San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257

    Article  CAS  PubMed  Google Scholar 

  14. Duvic M, Vu J (2007) Vorinostat: a new oral histone deacetylase inhibitor approved for cutaneous t-cell lymphoma. Expert Opin Investig Drugs 16:1111–1120

    Article  CAS  PubMed  Google Scholar 

  15. Piekarz RL, Frye R, Turner M, Wright JJ, Allen SL, Kirschbaum MH, Zain J, Prince HM, Leonard JP, Geskin LJ et al (2009) Phase ii multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous t-cell lymphoma. J Clin Oncol 27:5410–5417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prince HM, Bishton MJ, Harrison SJ (2009) Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 15:3958–3969

    Article  CAS  PubMed  Google Scholar 

  17. Xu Q, Patel D, Zhang X, Veenstra RD (2016) Changes in cardiac nav1.5 expression, function, and acetylation by pan-histone deacetylase inhibitors. Am J Physiol Heart Circ Physiol 311:H1139–H1149

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rephaeli A, Blank-Porat D, Tarasenko N, Entin-Meer M, Levovich I, Cutts SM, Phillips DR, Malik Z, Nudelman A (2005) In vivo and in vitro antitumor activity of butyroyloxymethyl-diethyl phosphate (an-7), a histone deacetylase inhibitor, in human prostate cancer. Int J Cancer 116:226–235

    Article  CAS  PubMed  Google Scholar 

  19. Engel D, Nudelman A, Levovich I, Gruss-Fischer T, Entin-Meer M, Phillips DR, Cutts SM, Rephaeli A (2006) Mode of interaction between butyroyloxymethyl-diethyl phosphate (an-7) and doxorubicin in mcf-7 and resistant mcf-7/dx cell lines. J Cancer Res Clin Oncol 132:673–683

    Article  CAS  PubMed  Google Scholar 

  20. Rephaeli A, Entin-Meer M, Angel D, Tarasenko N, Gruss-Fischer T, Bruachman I, Phillips DR, Cutts SM, Haas-Kogan D, Nudelman A (2006) The selectivty and anti-metastatic activity of oral bioavailable butyric acid prodrugs. Investig New Drugs 24:383–392

    Article  CAS  Google Scholar 

  21. Tarasenko N, Nudelman A, Tarasenko I, Entin-Meer M, Hass-Kogan D, Inbal A, Rephaeli A (2008) Histone deacetylase inhibitors: the anticancer, antimetastatic and antiangiogenic activities of an-7 are superior to those of the clinically tested an-9 (pivanex). Clin Exp Metastasis 25:703–716

    Article  CAS  PubMed  Google Scholar 

  22. Tarasenko N, Cutts SM, Phillips DR, Inbal A, Nudelman A, Kessler-Icekson G, Rephaeli A (2012) Disparate impact of butyroyloxymethyl diethylphosphate (an-7), a histone deacetylase inhibitor, and doxorubicin in mice bearing a mammary tumor. PLoS One 7:e31393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tarasenko N, Kessler-Icekson G, Boer P, Inbal A, Schlesinger H, Phillips DR, Cutts SM, Nudelman A, Rephaeli A (2012) The histone deacetylase inhibitor butyroyloxymethyl diethylphosphate (an-7) protects normal cells against toxicity of anticancer agents while augmenting their anticancer activity. Investig New Drugs 30:130–143

    Article  CAS  Google Scholar 

  24. Moyal L, Feldbaum N, Goldfeiz N, Rephaeli A, Nudelman A, Weitman M, Tarasenko N, Gorovitz B, Maron L, Yehezkel S et al (2016) The therapeutic potential of an-7, a novel histone deacetylase inhibitor, for treatment of mycosis fungoides/sezary syndrome alone or with doxorubicin. PLoS One 11:e0146115

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27:5459–5468

    Article  CAS  PubMed  Google Scholar 

  26. Bots M, Johnstone RW (2009) Rational combinations using hdac inhibitors. Clin Cancer Res 15:3970–3977

    Article  CAS  PubMed  Google Scholar 

  27. Grant S, Dai Y (2012) Histone deacetylase inhibitors and rational combination therapies. Adv Cancer Res 116:199–237

    Article  CAS  PubMed  Google Scholar 

  28. Bose P, Dai Y, Grant S (2014) Histone deacetylase inhibitor (hdaci) mechanisms of action: emerging insights. Pharmacol Ther 143:323–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robert C, Rassool FV (2012) Hdac inhibitors: roles of DNA damage and repair. Adv Cancer Res 116:87–129

    Article  CAS  PubMed  Google Scholar 

  30. Yang F, Teves SS, Kemp CJ, Henikoff S (1845) Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta 2014:84–89

    Google Scholar 

  31. Unland R, Borchardt C, Clemens D, Kool M, Dirksen U, Fruhwald MC (2015) Analysis of the antiproliferative effects of 3-deazaneoplanocin a in combination with standard anticancer agents in rhabdoid tumor cell lines. Anti-Cancer Drugs 26:301–311

    Article  CAS  PubMed  Google Scholar 

  32. Pettke A, Hotfilder M, Clemens D, Klco-Brosius S, Schaefer C, Potratz J, Dirksen U (2016) Suberanilohydroxamic acid (vorinostat) synergistically enhances the cytotoxicity of doxorubicin and cisplatin in osteosarcoma cell lines. Anti-Cancer Drugs 27:1001–1010

    Article  CAS  PubMed  Google Scholar 

  33. Heinicke U, Fulda S (2014) Chemosensitization of rhabdomyosarcoma cells by the histone deacetylase inhibitor saha. Cancer Lett 351:50–58

    Article  CAS  PubMed  Google Scholar 

  34. Kerl K, Ries D, Unland R, Borchert C, Moreno N, Hasselblatt M, Jurgens H, Kool M, Gorlich D, Eveslage M et al (2013) The histone deacetylase inhibitor saha acts in synergism with fenretinide and doxorubicin to control growth of rhabdoid tumor cells. BMC Cancer 13:286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheriyath V, Kuhns MA, Kalaycio ME, Borden EC (2011) Potentiation of apoptosis by histone deacetylase inhibitors and doxorubicin combination: cytoplasmic cathepsin b as a mediator of apoptosis in multiple myeloma. Br J Cancer 104:957–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Luong QT, O'Kelly J, Braunstein GD, Hershman JM, Koeffler HP (2006) Antitumor activity of suberoylanilide hydroxamic acid against thyroid cancer cell lines in vitro and in vivo. Clin Cancer Res 12:5570–5577

    Article  CAS  PubMed  Google Scholar 

  37. Tan J, Cang S, Ma Y, Petrillo RL, Liu D (2010) Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gardner JM, Introcaso CE, Nasta SD, Kim EJ, Vittorio CC, Rook AH (2009) A novel regimen of vorinostat with interferon gamma for refractory sezary syndrome. J Am Acad Dermatol 61:112–116

    Article  PubMed  Google Scholar 

  39. Akilov OE, Grant C, Frye R, Bates S, Piekarz R, Geskin LJ (2012) Low-dose electron beam radiation and romidepsin therapy for symptomatic cutaneous t-cell lymphoma lesions. Br J Dermatol 167:194–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rephaeli A, Waks-Yona S, Nudelman A, Tarasenko I, Tarasenko N, Phillips DR, Cutts SM, Kessler-Icekson G (1667-1674) Anticancer prodrugs of butyric acid and formaldehyde protect against doxorubicin-induced cardiotoxicity. Br J Cancer 2007:96

    Google Scholar 

  41. Kaltoft K, Thestrup-Pedersen K, Jensen JR, Bisballe S, Zachariae H (1984) Establishment of t and b cell lines from patients with mycosis fungoides. Br J Dermatol 111:303–308

    Article  CAS  PubMed  Google Scholar 

  42. Mann DL, O'Brien SJ, Gilbert DA, Reid Y, Popovic M, Read-Connole E, Gallo RC, Gazdar AF (1989) Origin of the hiv-susceptible human cd4+ cell line h9. AIDS Res Hum Retrovir 5:253–255

    Article  CAS  PubMed  Google Scholar 

  43. Puget N, Knowlton M, Scully R (2005) Molecular analysis of sister chromatid recombination in mammalian cells. DNA Repair (Amst) 4:149–161

    Article  CAS  Google Scholar 

  44. Moyal L, Lerenthal Y, Gana-Weisz M, Mass G, So S, Wang SY, Eppink B, Chung YM, Shalev G, Shema E et al (2011) Requirement of atm-dependent monoubiquitylation of histone h2b for timely repair of DNA double-strand breaks. Mol Cell 41:529–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roos WP, Krumm A (2016) The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair. Nucleic Acids Res 44:10017–10030

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kachhap SK, Rosmus N, Collis SJ, Kortenhorst MS, Wissing MD, Hedayati M, Shabbeer S, Mendonca J, Deangelis J, Marchionni L et al (2010) Downregulation of homologous recombination DNA repair genes by hdac inhibition in prostate cancer is mediated through the e2f1 transcription factor. PLoS One 5:e11208

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ito K, Adcock IM (2002) Histone acetylation and histone deacetylation. Mol Biotechnol 20:99–106

    Article  CAS  PubMed  Google Scholar 

  48. Luo J, Su F, Chen D, Shiloh A, Gu W (2000) Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408:377–381

    Article  CAS  PubMed  Google Scholar 

  49. Sung JJ, Ververis K, Karagiannis TC (2014) Histone deacetylase inhibitors potentiate photochemotherapy in cutaneous t-cell lymphoma myla cells. J Photochem Photobiol B 131:104–112

    Article  CAS  PubMed  Google Scholar 

  50. Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R, Smyth MJ, Johnstone RW (2001) The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (saha) induces a cell-death pathway characterized by cleavage of bid and production of reactive oxygen species. Proc Natl Acad Sci U S A 98:10833–10838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lukas J, Lukas C, Bartek J (2011) More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 13:1161–1169

    Article  CAS  PubMed  Google Scholar 

  52. Misteli T, Soutoglou E (2009) The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 10:243–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thurn KT, Thomas S, Moore A, Munster PN (2011) Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol 7:263–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marchion DC, Bicaku E, Daud AI, Richon V, Sullivan DM, Munster PN (2004) Sequence-specific potentiation of topoisomerase ii inhibitors by the histone deacetylase inhibitor suberoylanilide hydroxamic acid. J Cell Biochem 92:223–237

    Article  CAS  PubMed  Google Scholar 

  55. Moskowitz AJ, Horwitz SM (2016) Targeting histone deacetylases in t-cell lymphoma. Leuk Lymphoma 58:1–14

    Google Scholar 

Download references

Acknowledgments

We would like to thank Robert Gniadecki for the Hut78 and the MyLa cell lines and Alexandre Sellam and Elsa Levy for helping with the data analysis. This study was funded in part by the Alexander Samidoda Foundation of the Israel Cancer Association.

Funding

The work was partially supported by Alexander Samidoda Foundation of the Israel Cancer Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilach Moyal.

Ethics declarations

Conflict of interest

Lilach Moyal declares that she has no conflict of interest.

Neta Goldfeiz declares that she has no conflict of interest.

Batia Gorovitz declares that she has no conflict of interest.

Ada Rephaeli declares that she has no conflict of interest.

Efrat Tal declares that she has no conflict of interest.

Nataly Tarasenko declares that she has no conflict of interest.

Abraham Nudelman declares that he has no conflict of interest.

Yael Ziv declares that she has no conflict of interest.

Emmilia Hodak declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Electronic supplementary material

Figure S1

The expression levels of pKAP1 (a,c) and γH2AX (b,d) in western blot as presented in Fig. 2a,b were normalized to actin and presented in a column curve, MyLa (a,b), Hut78 (c,d). (TIFF 3203 kb)

High Resolution Image (GIF 18 kb)

Figure S2

The expression levels of DDR proteins in western blot as presented in Fig. 3a,b were normalized to actin. The expression in MyLa-treated cells at 48 h (a) and Hut78 cells at 24 h (b) relative to the untreated cells are presented in column curves. (TIFF 3112 kb)

High Resolution Image (GIF 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyal, L., Goldfeiz, N., Gorovitz, B. et al. AN-7, a butyric acid prodrug, sensitizes cutaneous T-cell lymphoma cell lines to doxorubicin via inhibition of DNA double strand breaks repair. Invest New Drugs 36, 1–9 (2018). https://doi.org/10.1007/s10637-017-0500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-017-0500-x

Keywords

Navigation