Skip to main content
Log in

Generation and tumor recognition properties of two human monoclonal antibodies specific to cell surface anionic phospholipids

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Phosphatidylserine (PS) and other anionic phospholipids, which become exposed on the surface of proliferating endothelial cells, tumor cells and certain leukocytes, have been used as targets for the development of clinical-stage biopharmaceuticals. One of these products (bavituximab) is currently being investigated in Phase 3 clinical trials. There are conflicting reports on the ability of bavituximab and other antibodies to recognize PS directly or through beta-2 glycoprotein 1, a serum protein that is not highly conserved across species. Here, we report on the generation and characterization of two fully human antibodies directed against phosphatidylserine. One of these antibodies (PS72) bound specifically to phosphatidylserine and to phosphatidic acid, but did not recognize other closely related phospholipids, while the other antibody (PS41) also bound to cardiolipin. Both PS72 and PS41 stained 8/9 experimental tumor models in vitro, but both antibodies failed to exhibit a preferential tumor accumulation in vivo, as revealed by quantitative biodistribution analysis. Our findings indicate that anionic phospholipids are exposed and accessible in most tumor types, but cast doubts about the possibility of efficiently targeting tumors in vivo with PS-specific reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PS:

Phosphatidylserine

β2GP1:

Beta-2 glycoprotein 1

DPPS:

1,2-Dipalmitoyl-sn-glycero-3-phosphoserine, sodium salt

DPPA:

1,2-Dipalmitoyl-sn-glycero-3-phosphate, sodium salt

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

DPPE:

1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine

SM:

Sphingomyelin

CL:

Cardiolipin

PI:

Phosphatidylinositol

References

  1. Fadok VA, de Cathelineau A, Daleke DL, Henson PM, Bratton DL (2001) Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J Biol Chem 276(2):1071–1077. doi:10.1074/jbc.M003649200

    Article  CAS  PubMed  Google Scholar 

  2. Fischer K, Voelkl S, Berger J, Andreesen R, Pomorski T, Mackensen A (2006) Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8+ T cells. Blood 108(13):4094–4101

    Article  CAS  PubMed  Google Scholar 

  3. Ran S, Thorpe PE (2002) Phosphatidylserine is a marker of tumor vasculature and a potential target for cancer imaging and therapy. Int J Radiat Oncol 54(5):1479–1484. doi:10.1016/s0360-3016(02)03928-7

    Article  CAS  Google Scholar 

  4. Riedl S, Rinner B, Asslaber M, Schaider H, Walzer S, Novak A, Lohner K, Zweytick D (2011) In search of a novel target — phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. BBA Biomembr 1808(11):2638–2645. doi:10.1016/j.bbamem.2011.07.026

    Article  CAS  Google Scholar 

  5. Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ (1991) Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res 51(11):3062–3066

    CAS  PubMed  Google Scholar 

  6. Yagle KJ, Eary JF, Tait JF, Grierson JR, Link JM, Lewellen B, Gibson DF, Krohn KA (2005) Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med 46(4):658–666

    CAS  PubMed  Google Scholar 

  7. Zhao D, Stafford JH, Zhou H, Thorpe PE (2011) Near-infrared optical imaging of exposed phosphatidylserine in a mouse glioma model. Transl Oncol 4(6):355–364

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hofstra L, Liem IH, Dumont EA, Boersma HH, van Heerde WL, Doevendans PA, DeMuinck E, Wellens HJJ, Kemerink GJ, Reutelingsperger CPM, Heidendal GA (2000) Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet 356(9225):209–212. doi:10.1016/S0140-6736(00)02482-X

    Article  CAS  PubMed  Google Scholar 

  9. Kietselaer BLJH, Reutelingsperger CPM, Boersma HH, Heidendal GAK, Liem IH, Crijns HJGM, Narula J, Hofstra L (2007) Noninvasive detection of programmed cell loss with 99mTc-labeled annexin A5 in heart failure. J Nucl Med 48(4):562–567. doi:10.2967/jnumed.106.039453

    Article  CAS  PubMed  Google Scholar 

  10. Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, Hartung D, Steinmetz N, Vanderheyden JL, Vannan MA, Gold HK, Reutelingsperger CPM, Hofstra L, Narula J (2003) Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 108(25):3134–3139. doi:10.1161/01.cir.0000105761.00573.50

    Article  CAS  PubMed  Google Scholar 

  11. Lampl Y, Lorberboym M, Blankenberg FG, Sadeh M, Gilad R (2006) Annexin V SPECT imaging of phosphatidylserine expression in patients with dementia. Neurology 66(8):1253–1254. doi:10.1212/01.wnl.0000208436.75615.8c

    Article  CAS  PubMed  Google Scholar 

  12. Narula J, Acio ER, Narula N, Samuels LE, Fyfe B, Wood D, Fitzpatrick JM, Raghunath PN, Tomaszewski JE, Kelly C, Steinmetz N, Green A, Tait JF, Leppo J, Blankenberg FG, Jain D, Strauss HW (2001) Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat Med 7(12):1347–1352

    Article  CAS  PubMed  Google Scholar 

  13. Post AM, Katsikis PD, Tait JF, Geaghan SM, Strauss HW, Blankenberg FG (2002) Imaging cell death with radiolabeled annexin V in an experimental model of rheumatoid arthritis. J Nucl Med 43(10):1359–1365

    CAS  PubMed  Google Scholar 

  14. Bondanza A, Zimmermann VS, Rovere-Querini P, Turnay J, Dumitriu IE, Stach CM, Voll RE, Gaipl US, Bertling W, Pöschl E, Kalden JR, Manfredi AA, Herrmann M (2004) Inhibition of phosphatidylserine recognition heightens the immunogenicity of irradiated lymphoma cells in vivo. J Exp Med 200(9):1157–1165. doi:10.1084/jem.20040327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. He J, Yin Y, Luster TA, Watkins L, Thorpe PE (2009) Antiphosphatidylserine antibody combined with irradiation damages tumor blood vessels and induces tumor immunity in a rat model of glioblastoma. Clin Cancer Res 15(22):6871–6880. doi:10.1158/1078-0432.ccr-09-1499

    Article  CAS  PubMed  Google Scholar 

  16. Huang X, Bennett M, Thorpe PE (2005) A monoclonal antibody that binds anionic phospholipids on tumor blood vessels enhances the antitumor effect of docetaxel on human breast tumors in mice. Cancer Res 65(10):4408–4416. doi:10.1158/0008-5472.can-05-0031

    Article  CAS  PubMed  Google Scholar 

  17. Ran S, He J, Huang X, Soares M, Scothorn D, Thorpe PE (2005) Antitumor effects of a monoclonal antibody that binds anionic phospholipids on the surface of tumor blood vessels in mice. Clin Cancer Res 11(4):1551–1562. doi:10.1158/1078-0432.ccr-04-1645

    Article  CAS  PubMed  Google Scholar 

  18. Beck AW, Luster TA, Miller AF, Holloway SE, Conner CR, Barnett CC, Thorpe PE, Fleming JB, Brekken RA (2006) Combination of a monoclonal anti-phosphatidylserine antibody with gemcitabine strongly inhibits the growth and metastasis of orthotopic pancreatic tumors in mice. Int J Cancer 118(10):2639–2643. doi:10.1002/ijc.21684

    Article  CAS  PubMed  Google Scholar 

  19. Luster TA, He J, Huang X, Maiti SN, Schroit AJ, de Groot PG, Thorpe PE (2006) Plasma protein β-2-glycoprotein 1 mediates interaction between the anti-tumor monoclonal antibody 3G4 and anionic phospholipids on endothelial cells. J Biol Chem 281(40):29863–29871. doi:10.1074/jbc.M605252200

    Article  CAS  PubMed  Google Scholar 

  20. Tomasi M, Hiromasa Y, Pope MR, Gudlur S, Tomich JM, Fleming SD (2012) Human β2-glycoprotein I attenuates mouse intestinal ischemia/reperfusion induced injury and inflammation. Mol Immunol 52(3–4):207–216. doi:10.1016/j.molimm.2012.05.018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Stafford JH, Hao G, Best AM, Sun X, Thorpe PE (2013) Highly specific PET imaging of prostate tumors in mice with an iodine-124-labeled antibody fragment that targets phosphatidylserine. PLoS ONE 8(12), e84864. doi:10.1371/journal.pone.0084864

    Article  PubMed Central  PubMed  Google Scholar 

  22. Wahl RL, Parker CW, Philpott GW (1983) Improved radioimaging and tumor localization with monoclonal F(ab’)2. J Nucl Med 24(4):316–325

    CAS  PubMed  Google Scholar 

  23. Weber M, Bujak E, Putelli A, Villa A, Matasci M, Gualandi L, Hemmerle T, Wulhfard S, Neri D (2014) A highly functional synthetic phage display library containing over 40 billion human antibody clones. PLoS ONE 9(6), e100000. doi:10.1371/journal.pone.0100000

    Article  PubMed Central  PubMed  Google Scholar 

  24. Borsi L, Balza E, Bestagno M, Castellani P, Carnemolla B, Biro A, Leprini A, Sepulveda J, Burrone O, Neri D, Zardi L (2002) Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer 102:75–85

    Article  CAS  PubMed  Google Scholar 

  25. Zuberbühler K, Palumbo A, Bacci C, Giovannoni L, Sommavilla R, Kaspar M, Trachsel E, Neri D (2009) A general method for the selection of high-level scFv and IgG antibody expression by stably transfected mammalian cells. Protein Eng Des Sel 22(3):169–174. doi:10.1093/protein/gzn068

    Article  PubMed  Google Scholar 

  26. Villa A, Trachsel E, Kaspar M, Schliemann C, Sommavilla R, Rybak J, Rosli C, Borsi L, Neri D (2008) A high-affinity human monoclonal antibody specific to the alternatively spliced EDA domain of fibronectin efficiently targets tumor neo-vasculature in vivo. Int J Cancer 122:2405–2413

    Article  CAS  PubMed  Google Scholar 

  27. Frey K, Zivanovic A, Schwager K, Neri D (2011) Antibody-based targeting of interferon-alpha to the tumor neovasculature: a critical evaluation. Integr Biol 3(4):468–478. doi:10.1039/c0ib00099j

    Article  CAS  Google Scholar 

  28. Rybak J-N, Roesli C, Kaspar M, Villa A, Neri D (2007) The extra-domain a of fibronectin is a vascular marker of solid tumors and metastases. Cancer Res 67(22):10948–10957. doi:10.1158/0008-5472.can-07-1436

    Article  CAS  PubMed  Google Scholar 

  29. Purpura M, Jager R, Joy J, Lowery R, Moore J, Wilson J (2013) Effect of oral administration of soy-derived phosphatidic acid on concentrations of phosphatidic acid and lyso-phosphatidic acid molecular species in human plasma. Int J Sport Nutr 10(Suppl 1):P22

    Article  Google Scholar 

  30. Mills GB, Moolenaar WH (2003) The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 3(8):582–591

    Article  CAS  PubMed  Google Scholar 

  31. Noh J-Y, Lim K-M, Bae O-N, Chung S-M, Lee S-W, Joo K-M, Lee S-D, Chung J-H (2010) Procoagulant and prothrombotic activation of human erythrocytes by phosphatidic acid, vol 299. vol 2. doi:10.1152/ajpheart.01144.2009

  32. Leventis PA, Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39(1):407–427. doi:10.1146/annurev.biophys.093008.131234

    Article  CAS  PubMed  Google Scholar 

  33. Fridriksson EK, Shipkova PA, Sheets ED, Holowka D, Baird B, McLafferty FW (1999) Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry†. Biochemistry 38(25):8056–8063. doi:10.1021/bi9828324

    Article  CAS  PubMed  Google Scholar 

  34. Bevers E, Comfurius P, Zwaal R (1996) Regulatory mechanisms in maintenance and modulation of transmembrane lipid asymmetry: pathophysiological implications. Lupus 5(5):480–487. doi:10.1177/096120339600500531

    CAS  PubMed  Google Scholar 

  35. Peregrine (2014) Data presented at ASCO shows promising 11.7 month median overall survival in second- line NSCLC patients treated with Peregrine Pharmaceuticals’ novel immunotherapy bavituximab. Accessed 27 June 2014

  36. Lorberboym M, Blankenberg FG, Sadeh M, Lampl Y (2006) In vivo imaging of apoptosis in patients with acute stroke: correlation with blood–brain barrier permeability. Brain Res 1103(1):13–19. doi:10.1016/j.brainres.2006.05.073

    Article  CAS  PubMed  Google Scholar 

  37. Belhocine T, Steinmetz N, Hustinx R, Bartsch P, Jerusalem G, Seidel L, Rigo P, Green A (2002) Increased uptake of the apoptosis-imaging agent 99mTc recombinant human annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 8(9):2766–2774

    CAS  PubMed  Google Scholar 

  38. Schlaepfer DD, Haigler HT (1987) Characterization of Ca2 + −dependent phospholipid binding and phosphorylation of lipocortin I. J Biol Chem 262(14):6931–6937

    CAS  PubMed  Google Scholar 

  39. Andree HA, Reutelingsperger CP, Hauptmann R, Hemker HC, Hermens WT, Willems GM (1990) Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J Biol Chem 265(9):4923–4928

    CAS  PubMed  Google Scholar 

  40. Tait JF, Gibson D (1992) Phospholipid binding of annexin V: effects of calcium and membrane phosphatidylserine content. Arch Biochem Biophys 298(1):187–191. doi:10.1016/0003-9861(92)90111-9

    Article  CAS  PubMed  Google Scholar 

  41. Andree HA, Stuart MC, Hermens WT, Reutelingsperger CP, Hemker HC, Frederik PM, Willems GM (1992) Clustering of lipid-bound annexin V may explain its anticoagulant effect. J Biol Chem 267(25):17907–17912

    CAS  PubMed  Google Scholar 

  42. Mosser G, Ravanat C, Freyssinet J-M, Brisson A (1991) Sub-domain structure of lipid-bound annexin-V resolved by electron image analysis. J Mol Biol 217(2):241–245. doi:10.1016/0022-2836(91)90538-H

    Article  CAS  PubMed  Google Scholar 

  43. Tait JF, Gibson D, Fujikawa K (1989) Phospholipid binding properties of human placental anticoagulant protein-I, a member of the lipocortin family. J Biol Chem 264(14):7944–7949

    CAS  PubMed  Google Scholar 

  44. Pfaffen S, Frey K, Stutz I, Roesli C, Neri D (2010) Tumour-targeting properties of antibodies specific to MMP-1A, MMP-2 and MMP-3. Eur J Nucl Med Mol Imaging 37(8):1559–1565. doi:10.1007/s00259-010-1446-9

    Article  CAS  PubMed  Google Scholar 

  45. Silacci M, Brack S, Schirru G, Marlind J, Ettorre A, Merlo A, Viti F, Neri D (2005) Design, construction, and characterization of a large synthetic human antibody phage display library. Proteomics 5:2340–2350

    Article  CAS  PubMed  Google Scholar 

  46. List T, Neri D (2012) Biodistribution studies with tumor-targeting bispecific antibodies reveal selective accumulation at the tumor site. mAbs 4(6):775–783

    Article  PubMed Central  PubMed  Google Scholar 

  47. Silacci M, Brack S, Spath N, Buck A, Hillinger S, Arni S, Weder W, Zardi L, Neri D (2006) Human monoclonal antibodies to domain C of tenascin-C selectively target solid tumors in vivo. Protein Eng Des Sel 19:471–478

    Article  CAS  PubMed  Google Scholar 

  48. Tarli L, Balza E, Viti F, Borsi L, Castellani P, Berndorff D, Dinkelborg L, Neri D, Zardi L (1999) A high-affinity human antibody that targets tumoral blood vessels. Blood 94(1):192–198

    CAS  PubMed  Google Scholar 

  49. Fraker PJ (2012) Reprint of “Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-Tetrachloro-3a,6a-Diphenylglycoluril”. Biochem Biophys Res Commun 425(3):510–518. doi:10.1016/j.bbrc.2012.08.017

    Article  CAS  PubMed  Google Scholar 

  50. Salacinski PRP, McLean C, Sykes JEC, Clement-Jones VV, Lowry PJ (1981) Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3α,6α-diphenyl glycoluril (Iodogen). Anal Biochem 117(1):136–146. doi:10.1016/0003-2697(81)90703-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from ETH Zürich, the Swiss National Science Foundation, the Kommission für Technologie und Innovation (KTI MedTech Award) and the European Union (PRIAT FP7 Project) is gratefully acknowledged. Also, we would like to thank Dr. Sarah Wulhfard and Dr. Doriana Triggiani for their help with the biodistribution experiment.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Neri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

BIAcore profiles of scFv(PS41) and scFv(PS72) against DPPS on L1 BIAcore chip. (JPEG 28 kb)

Supplementary Figure 2

Biodistribution studies of radioiodinated SIP(PS41), SIP(PS72) and SIP(F8) 24 h after i.v. injection into tumor bearing (SKRC-52) BALB/c nude mice. (PPT 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bujak, E., Pretto, F. & Neri, D. Generation and tumor recognition properties of two human monoclonal antibodies specific to cell surface anionic phospholipids. Invest New Drugs 33, 791–800 (2015). https://doi.org/10.1007/s10637-015-0248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-015-0248-0

Keywords

Navigation