Skip to main content

Advertisement

Log in

3,4′,5-trans-Trimethoxystilbene; a natural analogue of resveratrol with enhanced anticancer potency

  • REVIEW
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Resveratrol is a phytoalexin produced by many plant species as a defence mechanism. Over the last decade, this polyphenol has been reported to be active against multiple targets associated with chronic disorders. However, its poor pharmacokinetic profile, as well as multiple discrepancies related to its in vitro and in vivo profile, has resulted not only on the study of suitable delivery systems, but the use of resveratrol derivatives. In this regard, the 3,4′,5-trans-trimethoxystilbene (TMS), a natural analogue of resveratrol, has emerged as a strong candidate. TMS has an enhanced anticancer profile compared to resveratrol, exhibiting higher potency than resveratrol, as shown by multiple reports describing an improved cancer cell proliferation inhibition, induction of cell cycle arrest, decreased metastasis, reduced angiogenesis, and increased apoptosis. In this review, we provide a concise summary of results reported in the literature, related to the similarities and differences between resveratrol and TMS, and we submit to the scientific community that TMS is a promising and (still) understudied natural agent candidate, with potential applications in cancer research. Nevertheless, based on the available evidence, we also submit to the scientific community that TMS may also find a niche in any other research area in which resveratrol has been used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AKT:

Protein kinase B

AP-1:

Activator protein 1

Bcl-2:

B-cell lymphoma 2

Bcl-XL :

B-cell lymphoma-extra large

CAT:

Catalase

CDKs:

cyclin dependent kinases

COX:

Cyclooxygenase

CYP450:

Cytochrome P450

DMBA:

7,12-dimethylbenz [a] anthracene

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial mesenchymal transition

GSK:

Glycogen synthase kinase

H2O2 :

Hydrogen peroxide

HO-1:

Heme oxygenase-1

ICAM-1:

Intercellular adhesion molecule

iNOS:

Inducible nitric oxide synthase

JNK:

c-Jun N-terminal kinase

LDL:

Low density lipoproteins

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MMP:

Metalloproteinase

MTA1:

Metastasis-associated protein 1

NF-κB:

Nuclear transcription factor-kappa B

PI3K:

Phosphoinositide 3-kinase

PPARγ:

Peroxisome proliferator activated receptor gamma

SOD:

Superoxide dismutase

STAT:

Signal transducer and activator of transcription

TMS:

3,4′,5-trans-trimethoxystilbene

TNF:

Tumor necrosis factor

TPA:

12-O-tetradecanoylphorbol-13-acetate

VCAM-1:

Vascular cell adhesion protein 1

VEGF:

Vascular endothelial growth factor.

References

  1. Harikumar KB, Aggarwal BB (2008) Resveratrol: A multitargeted agent for age-associated chronic diseases. Cell Cycle 7(8):1020–1035

    CAS  PubMed  Google Scholar 

  2. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220

    CAS  PubMed  Google Scholar 

  3. Koeberle A, Werz O (2014) Multi-target approach for natural products in inflammation. Drug Discov Today 19(12):1871–1882

    CAS  PubMed  Google Scholar 

  4. Tang PC, Ng YF, Ho S, Gyda M, Chan SW (2014) Resveratrol and cardiovascular health–promising therapeutic or hopeless illusion? Pharmacol Res 90:88–115

    CAS  PubMed  Google Scholar 

  5. Farris P, Krutmann J, Li YH, McDaniel D, Krol Y (2013) Resveratrol: a unique antioxidant offering a multi-mechanistic approach for treating aging skin. J Drugs Dermatol 12(12):1389–1394

    CAS  PubMed  Google Scholar 

  6. Kasiotis KM, Pratsinis H, Kletsas D, Haroutounian SA (2013) Resveratrol and related stilbenes: Their anti-aging and anti-angiogenic properties. Food Chem Toxicol 61:112–120

    CAS  PubMed  Google Scholar 

  7. Tome-Carneiro J, Larrosa M, Gonzalez-Sarrias A, Tomas-Barberan FA, Garcia-Conesa MT, Espin JC (2013) Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 19(34):6064–6093

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Scott E, Steward WP, Gescher AJ, Brown K (2012) Resveratrol in human cancer chemoprevention – Choosing the ‘right’ dose. Mol Nutr Food Res 56(1):7–13

    CAS  PubMed  Google Scholar 

  9. Signorelli P, Ghidoni R (2005) Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem 16(8):449–466

    CAS  PubMed  Google Scholar 

  10. Delmas D, Aires V, Limagne E, Dutartre P, Mazué F, Ghiringhelli F et al (2011) Transport, stability, and biological activity of resveratrol. Ann N Y Acad Sci 1215(1):48–59

    CAS  PubMed  Google Scholar 

  11. Cottart CH, Nivet-Antoine V, Beaudeux JL (2014) Review of recent data on the metabolism, biological effects, and toxicity of resveratrol in humans. Mol Nutr Food Res 58(1):7–21

    CAS  PubMed  Google Scholar 

  12. Smoliga J, Blanchard O (2014) Enhancing the delivery of resveratrol in humans: if Low bioavailability is the problem, what is the solution? Molecules 19(11):17154–17172

    PubMed  Google Scholar 

  13. Pangeni R, Sahni JK, Ali J, Sharma S, Baboota S (2014) Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Deliv 11(8):1285–1298

    CAS  PubMed  Google Scholar 

  14. H-s L, Ho PC (2011) Preclinical pharmacokinetic evaluation of resveratrol trimethyl ether in sprague-dawley rats: the impacts of aqueous solubility, dose escalation, food and repeated dosing on oral bioavailability. J Pharm Sci 100(10):4491–4500

    Google Scholar 

  15. Wang TT, Schoene NW, Kim YS, Mizuno CS, Rimando AM (2010) Differential effects of resveratrol and its naturally occurring methylether analogs on cell cycle and apoptosis in human androgen-responsive LNCaP cancer cells. Mol Nutr Food Res 54(3):335–344

    CAS  PubMed  Google Scholar 

  16. Weng C-J, Yang Y-T, Ho C-T, Yen G-C (2009) Mechanisms of apoptotic effects induced by resveratrol, dibenzoylmethane, and their analogues on human lung carcinoma cells. J Agric Food Chem 57(12):5235–5243

    CAS  PubMed  Google Scholar 

  17. Yang Y-T, Weng C-J, Ho C-T, Yen G-C (2009) Resveratrol analog-3,5,4′-trimethoxy-trans-stilbene inhibits invasion of human lung adenocarcinoma cells by suppressing the MAPK pathway and decreasing matrix metalloproteinase-2 expression. Mol Nutr Food Res 53(3):407–416

    CAS  PubMed  Google Scholar 

  18. Bader Y, Madlener S, Strasser S, Maier S, Saiko P, Stark N et al (2008) Stilbene analogues affect cell cycle progression and apoptosis independently of each other in an MCF-7 array of clones with distinct genetic and chemoresistant backgrounds. Oncol Rep 19(3):801–810

    CAS  PubMed  Google Scholar 

  19. Li L, Xiu-Ju L, Ying-Zi L, Yi-Shuai Z, Qiong Y, Na T et al (2010) The role of the DDAH-ADMA pathway in the protective effect of resveratrol analog BTM-0512 on gastric mucosal injury. Can J Physiol Pharmacol 88(5):562–567

    CAS  PubMed  Google Scholar 

  20. Dias SJ, Li K, Rimando AM, Dhar S, Mizuno CS, Penman AD et al (2013) Trimethoxy-resveratrol and piceatannol administered orally suppress and inhibit tumor formation and growth in prostate cancer xenografts. Prostate 73(11):1135–1146

    CAS  PubMed  Google Scholar 

  21. Rivera H, Shibayama M, Tsutsumi V, Perez-Alvarez V, Muriel P (2008) Resveratrol and trimethylated resveratrol protect from acute liver damage induced by CCl4 in the rat. J Appl Toxicol 28(2):147–155

    CAS  PubMed  Google Scholar 

  22. Liu B, Luo XJ, Yang ZB, Zhang JJ, Li TB, Zhang XJ et al (2014) Inhibition of NOX/VPO1 pathway and inflammatory reaction by trimethoxystilbene in prevention of cardiovascular remodeling in hypoxia-induced pulmonary hypertensive rats. J Cardiovasc Pharmacol 63(6):567–576

    CAS  PubMed  Google Scholar 

  23. Kim DW, Kim YM, Kang SD, Han YM, Pae HO (2012) Effects of resveratrol and trans-3,5,4′-trimethoxystilbene on glutamate-induced cytotoxicity, heme oxygenase-1, and sirtuin 1 in HT22 neuronal cells. Biomol Ther (Seoul) 20(3):306–312

    CAS  Google Scholar 

  24. Blair GE, Cassady JM, Robbers JE, Tyler VE, Raffauf RF (1969) Isolation of 3,4′,5-trimethoxy-trans-stilbene, otobaene and hydroxyotobain from Virola cuspidata. Phytochemistry 8(2):497–500

    CAS  Google Scholar 

  25. MacRae WD, Towers GHN (1985) Non-alkaloidal constituents of Virola elongata bark. Phytochemistry 24(3):561–566

    CAS  Google Scholar 

  26. Abdel-Mogib M, Basaif SA, Sobahi TR (2001) Stilbenes and a new acetophenone derivative from Scirpus holoschoenus. Molecules 6(8):663–667

    CAS  Google Scholar 

  27. Kumar RJ, Jyostna D, Krupadanam GLD, Srimannarayana G (1988) Phenanthrene and stilbenes from pterolobium-hexapetallum. Phytochemistry 27(11):3625–3626

    CAS  Google Scholar 

  28. Anjaneyulu ASR, Reddy AVR, Reddy DSK, Ward RS, Adhikesavalu D, Cameron TS (1984) Pacharin - a New dibenzo (2,3–6,7) oxepin derivative from bauhinia-racemosa lamk. Tetrahedron 40(21):4245–4252

    CAS  Google Scholar 

  29. Coulerie P, Eydoux C, Hnawia E, Stuhl L, Maciuk A, Lebouvier N et al (2012) Biflavonoids of dacrydium balansae with potent inhibitory activity on dengue 2 NS5 polymerase. Planta Med 78(7):672–677

    CAS  PubMed  Google Scholar 

  30. Kim DH, Kim JH, Baek SH, Seo JH, Kho YH, Oh TK et al (2004) Enhancement of tyrosinase inhibition of the extract of Veratrum patulum using cellulase. Biotechnol Bioeng 87(7):849–854

    CAS  PubMed  Google Scholar 

  31. Belofsky G, Percivill D, Lewis K, Tegos GP, Ekart J (2004) Phenolic metabolites of Dalea versicolor that enhance antibiotic activity against model pathogenic bacteria. J Nat Prod 67(3):481–484

    CAS  PubMed  Google Scholar 

  32. Zaki MA, Balachandran P, Khan S, Wang M, Mohammed R, Hetta MH et al (2013) Cytotoxicity and modulation of cancer-related signaling by (Z)- and (E)-3,4,3′,5′-tetramethoxystilbene isolated from Eugenia rigida. J Nat Prod 76(4):679–684

    CAS  PubMed  Google Scholar 

  33. Ehrhardt C, Arapitsas P, Stefanini M, Flick G, Mattivi F (2014) Analysis of the phenolic composition of fungus-resistant grape varieties cultivated in Italy and Germany using UHPLC-MS/MS. J Mass Spectrom 49(9):860–869

    CAS  PubMed  Google Scholar 

  34. Chaher N, Arraki K, Dillinseger E, Temsamani H, Bernillon S, Pedrot E et al (2014) Bioactive stilbenes from Vitis vinifera grapevine shoots extracts. J Sci Food Agric 94(5):951–954

    CAS  PubMed  Google Scholar 

  35. Xie L, Bolling BW (2014) Characterisation of stilbenes in California almonds (Prunus dulcis) by UHPLC-MS. Food Chem 148:300–306

    CAS  PubMed  Google Scholar 

  36. Sales JM, Resurreccion AVA (2013) Resveratrol in peanuts. Crit Rev Food Sci Nutr 54(6):734–770

    Google Scholar 

  37. Lopes RM, Agostini-Costa TS, Gimenes MA, Dm S (2011) Chemical composition and biological activities of arachis species. J Agric Food Chem 59(9):4321–4330

    CAS  PubMed  Google Scholar 

  38. Alonso F, Riente P, Yus M (2009) Synthesis of resveratrol, DMU-212 and analogues through a novel Wittig-type olefination promoted by nickel nanoparticles. Tetrahedron Lett 50(25):3070–3073

    CAS  Google Scholar 

  39. Farina A, Ferranti C, Marra C, Guiso M, Norcia G (2007) Synthesis of hydroxystilbenes and their derivatives via Heck reaction. Nat Prod Res 21(6):564–573

    CAS  PubMed  Google Scholar 

  40. Das J, Pany S, Majhi A (2011) Chemical modifications of resveratrol for improved protein kinase C alpha activity. Bioorg Med Chem 19(18):5321–5333

    CAS  PubMed  Google Scholar 

  41. Solladié G, Pasturel-Jacopé Y, Maignan J (2003) A re-investigation of resveratrol synthesis by Perkins reaction. Application to the synthesis of aryl cinnamic acids. Tetrahedron 59(18):3315–3321

    Google Scholar 

  42. Yoo KM, Kim S, Moon BK, Kim SS, Kim KT, Kim SY et al (2006) Potent inhibitory effects of resveratrol derivatives on progression of prostate cancer cells. Arch Pharm 339(5):238–241

    CAS  Google Scholar 

  43. Kumar A, Lin S-Y, Dhar S, Rimando AM, Levenson AS (2014) Stilbenes inhibit androgen receptor expression in 22Rv1 castrate-resistant prostate cancer cells. J Medicinally Active Plants 3(1):1–8

    Google Scholar 

  44. Cardile V, Chillemi R, Lombardo L, Sciuto S, Spatafora C, Tringali C (2007) Antiproliferative activity of methylated analognes of E- and Z-resveratrol. Z Naturforsch C 62(3–4):189–195

    CAS  PubMed  Google Scholar 

  45. Gosslau A, Pabbaraja S, Knapp S, Chen KY (2008) Trans- and cis-stilbene polyphenols induced rapid perinuclear mitochondrial clustering and p53-independent apoptosis in cancer cells but not normal cells. Eur J Pharmacol 587(1–3):25–34

    CAS  PubMed  Google Scholar 

  46. Shi L, Huang XF, Zhu ZW, Li HQ, Xue JY, Zhu HL et al (2008) Synthesis of alpha-aminoalkyl phosphonate derivatives of resveratrol as potential antitumour agents. Aust J Chem 61(6):472–475

    CAS  Google Scholar 

  47. Lee S, Nam K, Hoe Y, Min H-Y, Kim E-Y, Ko H et al (2003) Synthesis and evaluation of cytotoxicity of stilbene analogues. Arch Pharm Res 26(4):253–257

    CAS  PubMed  Google Scholar 

  48. Paul S, Mizuno CS, Lee HJ, Zheng X, Chajkowisk S, Rimoldi JM et al (2010) In vitro and in vivo studies on stilbene analogs as potential treatment agents for colon cancer. Eur J Med Chem 45(9):3702–3708

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Mazue F, Colin D, Gobbo J, Wegner M, Rescifina A, Spatafora C et al (2010) Structural determinants of resveratrol for cell proliferation inhibition potency: experimental and docking studies of new analogs. Eur J Med Chem 45(7):2972–2980

    CAS  PubMed  Google Scholar 

  50. Minutolo F, Sala G, Bagnacani A, Bertini S, Carboni I, Placanica G et al (2005) Synthesis of a resveratrol analogue with high ceramide-mediated proapoptotic activity on human breast cancer cells. J Med Chem 48(22):6783–6786

    CAS  PubMed  Google Scholar 

  51. Zhang W, Go ML (2011) Methoxylation of resveratrol: Effects on induction of NAD (P) H Quinone-oxidoreductase 1 (NQO1) activity and growth inhibitory properties. Bioorg Med Chem Lett 21(3):1032–1035

    CAS  PubMed  Google Scholar 

  52. Ruan B-F, Lu X, Tang J-F, Wei Y, Wang X-L, Zhang Y-B et al (2011) Synthesis, biological evaluation, and molecular docking studies of resveratrol derivatives possessing chalcone moiety as potential antitubulin agents. Bioorg Med Chem 19(8):2688–2695

    CAS  PubMed  Google Scholar 

  53. Chen Y, Hu F, Gao Y, Jia S, Ji N, Hua E (2013) Design, synthesis, and evaluation of methoxylated resveratrol derivatives as potential antitumor agents. Res Chem Intermed:1–14

  54. Pettit GR, Grealish MP, Jung MK, Hamel E, Pettit RK, Chapuis JC et al (2002) Antineoplastic agents. 465. Structural modification of resveratrol: sodium resverastatin Phosphate1. J Med Chem 45(12):2534–2542

    CAS  PubMed  Google Scholar 

  55. Simoni D, Roberti M, Invidiata FP, Aiello E, Aiello S, Marchetti P et al (2006) Stilbene-based anticancer agents: Resveratrol analogues active toward HL60 leukemic cells with a non-specific phase mechanism. Bioorg Med Chem Lett 16(12):3245–3248

    CAS  PubMed  Google Scholar 

  56. Tolomeo M, Grimaudo S, Di Cristina A, Roberti M, Pizzirani D, Meli M et al (2005) Pterostilbene and 3′-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells. Int J Biochem Cell Biol 37(8):1709–1726

    CAS  PubMed  Google Scholar 

  57. Deng Y-H, Alex D, Huang H-Q, Wang N, Yu N, Wang Y-T et al (2011) Inhibition of TNF-α-mediated endothelial cell–monocyte cell adhesion and adhesion molecules expression by the resveratrol derivative, trans-3,5,4′-trimethoxystilbene. Phytother Res 25(3):451–457

    CAS  PubMed  Google Scholar 

  58. Belleri M, Ribatti D, Nicoli S, Cotelli F, Forti L, Vannini V et al (2005) Antiangiogenic and vascular-targeting activity of the microtubule-destabilizing trans-resveratrol derivative 3,5,4′-trimethoxystilbene. Mol Pharmacol 67(5):1451–1459

    CAS  PubMed  Google Scholar 

  59. Morris V, Toseef T, Nazumudeen F, Rivoira C, Spatafora C, Tringali C, et al (2015) Anti-tumor properties of cis-resveratrol methylated analogs in metastatic mouse melanoma cells. Mol Cell Biochem:1–9

  60. Calabrese EJ, Mattson MP, Calabrese V (2010) Resveratrol commonly displays hormesis: Occurrence and biomedical significance. Hum Exp Toxicol 29(12):980–1015

    CAS  PubMed  Google Scholar 

  61. Su D, Cheng Y, Liu M, Liu D, Cui H, Zhang B et al (2013) Comparision of piceid and resveratrol in antioxidation and antiproliferation activities in vitro. PLoS One 8(1):e54505

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Fu Y, Chang H, Peng X, Bai Q, Yi L, Zhou Y et al (2014) Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/beta-catenin signaling pathway. PLoS One 9(7):e102535

    PubMed Central  PubMed  Google Scholar 

  63. Mohapatra P, Satapathy SR, Das D, Siddharth S, Choudhuri T, Kundu CN (2014) Resveratrol mediated cell death in cigarette smoke transformed breast epithelial cells is through induction of p21Waf1/Cip1 and inhibition of long patch base excision repair pathway. Toxicol Appl Pharmacol 275(3):221–231

    CAS  PubMed  Google Scholar 

  64. Sareen D, Darjatmoko SR, Albert DM, Polans AS (2007) Mitochondria, calcium, and calpain are Key mediators of resveratrol-induced apoptosis in breast cancer. Mol Pharmacol 72(6):1466–1475

    CAS  PubMed  Google Scholar 

  65. Guo L, Peng Y, Yao J, Sui L, Gu A, Wang J (2010) Anticancer activity and molecular mechanism of resveratrol-bovine serum albumin nanoparticles on subcutaneously implanted human primary ovarian carcinoma cells in nude mice. Cancer Biother Radiopharm 25(4):471–477

    CAS  PubMed  Google Scholar 

  66. Lee M-H, Choi BY, Kundu JK, Shin YK, Na H-K, Surh Y-J (2009) Resveratrol suppresses growth of human ovarian cancer cells in culture and in a murine xenograft model: eukaryotic elongation factor 1A2 as a potential target. Cancer Res 69(18):7449–7458

    CAS  PubMed  Google Scholar 

  67. Ganapathy S, Chen QH, Singh KP, Shankar S, Srivastava RK (2010) Resveratrol Enhances Antitumor Activity of TRAIL in Prostate Cancer Xenografts through Activation of FOXO Transcription Factor. PLoS One 5(12):e15627

  68. Sheth S, Jajoo S, Kaur T, Mukherjea D, Sheehan K, Rybak LP et al (2012) Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS One 7(12):e51655

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Harikumar KB, Kunnumakkara AB, Sethi G, Diagaradjane P, Anand P, Pandey MK et al (2010) Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int J Cancer 127(2):257–268

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Oi N, Jeong C-H, Nadas J, Cho Y-Y, Pugliese A, Bode AM et al (2010) Resveratrol, a Red wine polyphenol, suppresses pancreatic cancer by inhibiting leukotriene A4 hydrolase. Cancer Res 70(23):9755–9764

    CAS  PubMed  Google Scholar 

  71. Yin HT, Tian QZ, Guan L, Zhou Y, Huang XE, Zhang H (2013) In vitro and in vivo evaluation of the antitumor efficiency of resveratrol against lung cancer. Asian Pac J Cancer Prev 14(3):1703–1706

    PubMed  Google Scholar 

  72. Yu YH, Chen HA, Chen PS, Cheng YJ, Hsu WH, Chang YW et al (2013) MiR-520 h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol. Oncogene 32(4):431–443

    CAS  PubMed  Google Scholar 

  73. Zhang M, Zhou X, Zhou K (2013) Resveratrol inhibits human nasopharyngeal carcinoma cell growth via blocking pAkt/p70S6K signaling pathways. Int J Mol Med 31(3):621–627

    CAS  PubMed  Google Scholar 

  74. Tyagi A, Gu M, Takahata T, Frederick B, Agarwal C, Siriwardana S et al (2011) Resveratrol selectively induces DNA damage, independent of Smad4 expression, in its efficacy against human head and neck squamous cell carcinoma. Clin Cancer Res 17(16):5402–5411

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Yang Q, Wang B, Zang W, Wang X, Liu Z, Li W et al (2013) Resveratrol inhibits the growth of gastric cancer by inducing G1 phase arrest and senescence in a Sirt1-dependent manner. PLoS One 8(11):e70627

    PubMed Central  PubMed  Google Scholar 

  76. Hu F-W, Tsai L-L, Yu C-H, Chen P-N, Chou M-Y, Yu C-C (2012) Impairment of tumor-initiating stem-like property and reversal of epithelial–mesenchymal transdifferentiation in head and neck cancer by resveratrol treatment. Mol Nutr Food Res 56(8):1247–1258

    CAS  PubMed  Google Scholar 

  77. Frampton GA, Lazcano EA, Li H, Mohamad A, DeMorrow S (2010) Resveratrol enhances the sensitivity of cholangiocarcinoma to chemotherapeutic agents. Lab Invest 90(9):1325–1338

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Bai Y, Mao Q-Q, Qin J, Zheng X-Y, Wang Y-B, Yang K et al (2010) Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivo. Cancer Sci 101(2):488–493

    CAS  PubMed  Google Scholar 

  79. Majumdar APN, Banerjee S, Nautiyal J, Patel BB, Patel V, Du J et al (2009) Curcumin synergizes with resveratrol to inhibit colon cancer. Nutr Cancer 61(4):544–553

    CAS  PubMed  Google Scholar 

  80. Hao Y, Huang W, Liao M, Zhu Y, Liu H, Hao C et al (2013) The inhibition of resveratrol to human skin squamous cell carcinoma A431 xenografts in nude mice. Fitoterapia 86:84–91

    CAS  PubMed  Google Scholar 

  81. Wang TT, Hudson TS, Wang TC, Remsberg CM, Davies NM, Takahashi Y et al (2008) Differential effects of resveratrol on androgen-responsive LNCaP human prostate cancer cells in vitro and in vivo. Carcinogenesis 29(10):2001–2010

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Osmond GW, Masko EM, Tyler DS, Freedland SJ, Pizzo S (2013) In vitro and in vivo evaluation of resveratrol and 3,5-dihydroxy-4′-acetoxy-trans-stilbene in the treatment of human prostate carcinoma and melanoma. J Surg Res 179(1):e141–e148

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Klink JC, Tewari AK, Masko EM, Antonelli J, Febbo PG, Cohen P et al (2013) Resveratrol worsens survival in SCID mice with prostate cancer xenografts in a cell-line specific manner, through paradoxical effects on oncogenic pathways. Prostate 73(7):754–762

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Osmond GW, Augustine CK, Zipfel PA, Padussis J, Tyler DS (2012) Enhancing melanoma treatment with resveratrol. J Surg Res 172(1):109–115

    CAS  PubMed  Google Scholar 

  85. Fukui M, Yamabe N, Kang KS, Zhu BT (2010) Growth-stimulatory effect of resveratrol in human cancer cells. Mol Carcinog 49(8):750–759

    CAS  PubMed  Google Scholar 

  86. Zunino SJ, Storms DH, Newman JW, Pedersen TL, Keen CL, Ducore JM (2012) Dietary resveratrol does not delay engraftment, sensitize to vincristine or inhibit growth of high-risk acute lymphoblastic leukemia cells in NOD/SCID mice. Int J Oncol 41(6):2207–2212

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Pan MH, Gao JH, Lai CS, Wang YJ, Chen WM, Lo CY et al (2008) Antitumor activity of 3,5,4′-trimethoxystilbene in COLO 205 cells and xenografts in SCID mice. Mol Carcinog 47(3):184–196

    CAS  PubMed  Google Scholar 

  88. Hsieh TC, Huang YC, Wu JM (2011) Control of prostate cell growth, DNA damage and repair and gene expression by resveratrol analogues, in vitro. Carcinogenesis 32(1):93–101

    CAS  PubMed  Google Scholar 

  89. Hsieh TC, Wong C, John Bennett D, Wu JM (2011) Regulation of p53 and cell proliferation by resveratrol and its derivatives in breast cancer cells: an in silico and biochemical approach targeting integrin alphavbeta3. Int J Cancer 129(11):2732–2743

    CAS  PubMed  Google Scholar 

  90. Roy P, Kalra N, Prasad S, George J, Shukla Y (2009) Chemopreventive potential of resveratrol in mouse skin tumors through regulation of mitochondrial and PI3K/AKT signaling pathways. Pharm Res 26(1):211–217

    CAS  PubMed  Google Scholar 

  91. Kai L, Samuel SK, Levenson AS (2010) Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. Int J Cancer 126(7):1538–1548

    CAS  PubMed  Google Scholar 

  92. Wang TTY, Schoene NW, Kim YS, Mizuno CS, Rimando AM (2010) Differential effects of resveratrol and its naturally occurring methylether analogs on cell cycle and apoptosis in human androgen-responsive LNCaP cancer cells. Mol Nutr Food Res 54(3):335–344

    CAS  PubMed  Google Scholar 

  93. Alex D, Leong EC, Zhang Z-J, Yan GTH, Cheng S-H, Leong C-W et al (2010) Resveratrol derivative, trans-3,5,4′-trimethoxystilbene, exerts antiangiogenic and vascular-disrupting effects in zebrafish through the downregulation of VEGFR2 and cell-cycle modulation. J Cell Biochem 109(2):339–346

    CAS  PubMed  Google Scholar 

  94. Deck LM, Hunsaker LA, Gonzales AM, Orlando RA, Vander Jagt DL (2008) Substituted trans-stilbenes can inhibit or enhance the TPA-induced up-regulation of activator protein-1. BMC Pharmacol 8:19

    PubMed Central  PubMed  Google Scholar 

  95. Weng C-J, Wu C-F, Huang H-W, Wu C-H, Ho C-T, Yen G-C (2010) Evaluation of anti-invasion effect of resveratrol and related methoxy analogues on human hepatocarcinoma cells. J Agric Food Chem 58(5):2886–2894

    CAS  PubMed  Google Scholar 

  96. Tsai J-H, Hsu L-S, Lin C-L, Hong H-M, Pan M-H, Way T-D et al (2013) 3,5,4′-Trimethoxystilbene, a natural methoxylated analog of resveratrol, inhibits breast cancer cell invasiveness by downregulation of PI3K/Akt and Wnt/β-catenin signaling cascades and reversal of epithelial–mesenchymal transition. Toxicol Appl Pharmacol 272(3):746–756

    CAS  PubMed  Google Scholar 

  97. Li K, Dias SJ, Rimando AM, Dhar S, Mizuno CS, Penman AD et al (2013) Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer. PLoS One 8(3):e57542

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Kai L, Wang J, Ivanovic M, Chung Y-T, Laskin WB, Schulze-Hoepfner F et al (2011) Targeting prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1). Prostate 71(3):268–280

    CAS  PubMed  Google Scholar 

  99. Zheng LF, Wei QY, Cai YJ, Fang JG, Zhou B, Yang L et al (2006) DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu (II) ions: mechanism and structure-activity relationship. Free Radic Biol Med 41(12):1807–1816

    CAS  PubMed  Google Scholar 

  100. Basini G, Tringali C, Baioni L, Bussolati S, Spatafora C, Grasselli F (2010) Biological effects on granulosa cells of hydroxylated and methylated resveratrol analogues. Mol Nutr Food Res 54(S2):S236–S243

    CAS  PubMed  Google Scholar 

  101. Son Y, Chung H-T, Pae H-O (2014) Differential effects of resveratrol and its natural analogs, piceatannol and 3,5,4′-trans-trimethoxystilbene, on anti-inflammatory heme oxigenase-1 expression in RAW264.7 macrophages. Biofactors 40(1):138–145

    CAS  PubMed  Google Scholar 

  102. Rossi M, Caruso F, Antonioletti R, Viglianti A, Traversi G, Leone S et al (2013) Scavenging of hydroxyl radical by resveratrol and related natural stilbenes after hydrogen peroxide attack on DNA. Chem Biol Interact 206(2):175–185

    CAS  PubMed  Google Scholar 

  103. Caruso F, Tanski J, Villegas-Estrada A, Rossi M (2004) Structural basis for antioxidant activity of trans-resveratrol: ab initio calculations and crystal and molecular structure. J Agric Food Chem 52(24):7279–7285

    CAS  PubMed  Google Scholar 

  104. Potter GA, Patterson LH, Wanogho E, Perry PJ, Butler PC, Ijaz T et al (2002) The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYPIBI. Br J Cancer 86(5):774–778

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Piver B, Fer M, Vitrac X, Merillon J-M, Dreano Y, Berthou F et al (2004) Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochem Pharmacol 68(4):773–782

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by Saudi Cultural Bureau in Canada, for a graduate scholarship to F.S.A.

Conflict of interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahad S. Aldawsari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldawsari, F.S., Velázquez-Martínez, C.A. 3,4′,5-trans-Trimethoxystilbene; a natural analogue of resveratrol with enhanced anticancer potency. Invest New Drugs 33, 775–786 (2015). https://doi.org/10.1007/s10637-015-0222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-015-0222-x

Keywords

Navigation