Skip to main content
Log in

The ability of molecular docking to unravel the controversy and challenges related to P-glycoprotein—a well-known, yet poorly understood drug transporter

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

P-glycoprotein is the most crucial membrane transporter implicated in tumor resistance. Intensive efforts were paid to elucidate the complex mechanism of transport and to identify modulators of this transporter. However, the borderline between substrates and modulators is very thin and identification of the binding sites within P-glycoprotein is complex. Herein, we provide an intensive review of those issues and use molecular docking to assess its ability: first, to differentiate between three groups (substrates, modulators and non-substrates) and second to identify the binding sites. After thorough statistical analysis, we conclude despite the various challenges that molecular docking should not be underestimated as differences between the distinct groups were significant. However, when it comes to defining the binding site, care must be taken, since consensus throughout literature could not be reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–917

    Article  CAS  PubMed  Google Scholar 

  2. Katzung BG (2007) Basic and Clinical Pharmacology. 10th edition, p 879.

  3. Andreoli TE, Bennet JC, Carpenter CCJ, Plum F (1997) Cecil Essentials of Medicine. 4th edition, p 425.

  4. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y (1981) Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 41:1967–72

    CAS  PubMed  Google Scholar 

  5. Amiri-Kordestani L, Basseville A, Kurdziel K, Fojo AT, Bates SE (2012) Targeting MDR in breast and lung cancer: discriminating its potential importance from the failure of drug resistance reversal studies. Drug Resist Updat 15:50–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Fudin J, Fontenelle DV, Fudin HR, Carlyn C, Hinden DA, Ashley CC (2013) Potential P-glycoprotein pharmacokinetic interaction of telaprevir with morphine or methadone. J Pain Palliat Care Pharmacother 27:261–7

    Article  PubMed  Google Scholar 

  7. Robey RW, Shukla S, Finley EM, Oldham RK, Barnett D, Ambudkar SV, Fojo T, Bates SE (2008) Inhibition of P-glycoprotein (ABCB1)- and multidrug resistance-associated protein 1 (ABCC1)- mediated transport by the orally administered inhibitor, CBT-1((R)). Biochem Pharmacol 75:1302–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Leitner I, Nemeth J, Feurstein T, Abrahim A, Matzneller P, Lagler H, Erker T, Langer O, Zeitlinger M (2011) The third-generation P-glycoprotein inhibitor tariquidar may overcome bacterial multidrug resistance by increasing intracellular drug concentration. J Antimicrob Chemother 66:834–9

    Article  CAS  PubMed  Google Scholar 

  9. Coley HM (2010) Overcoming multidrug resistance in cancer: clinical studies of p-glycoprotein inhibitors. In Multi-Drug Resistance in Cancer, Humana Press, pp. 341–358.

  10. Holland IB, Cole SPC, Kuchler K, Higgens CF (2003) ABC proteins: from bacteria to man. Elsevier Science, London, 251

    Google Scholar 

  11. Brüggemann EP, Germann UA, Gottesman MM, Pastan I (1989) Two different regions of P-glycoprotein [corrected] are photoaffinity-labeled by azidopine. J Biol Chem 264:15483–8

    PubMed  Google Scholar 

  12. Safa AR (2004) Identification and characterization of the binding sites of P-glycoprotein for multidrug resistance-related drugs and modulators. Curr Med Chem Anticancer Agents 4:1–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Loo TW, Bartlett MC, Clarke DM (2003) Substrate-induced conformational changes in the transmembrane segments of human P-glycoprotein. Direct evidence for the substrate induced fit mechanism for drug binding. J Biol Chem 278:13603–6

    Article  CAS  PubMed  Google Scholar 

  14. Globisch C, Pajeva IK, Wiese M (2008) Identification of putative binding sites of P-glycoprotein based on its homology model. ChemMedChem 3:280–95

    Article  CAS  PubMed  Google Scholar 

  15. Maki N, Hafkemeyer P, Dey S (2003) Allosteric modulation of human P-glycoprotein. Inhibition of transport by preventing substrate translocation and dissociation. J Biol Chem 278:18132–9

    Article  CAS  PubMed  Google Scholar 

  16. Badhan R, Penny J (2006) In silico modelling of the interaction of flavonoids with human P-glycoprotein nucleotide-binding domain. Eur J Med Chem 41:285–95

    Article  CAS  PubMed  Google Scholar 

  17. Ambudkar SV, Kim IW, Xia D, Sauna ZE (2006) The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. FEBS Lett 580:1049–55

    Article  CAS  PubMed  Google Scholar 

  18. Mechetner EB, Roninson IB (1992) Efficient inhibition of P-glycoprotein-mediated multidrug resistance with a monoclonal antibody. Proc Natl Acad Sci U S A 89:5824–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Georges E, Tsuruo T, Ling V (1993) Topology of P-glycoprotein as determined by epitope mapping of MRK-16 monoclonal antibody. J Biol Chem 268:1792–8

    CAS  PubMed  Google Scholar 

  20. Nagy H, Goda K, Arceci R, Cianfriglia M, Mechetner E, Szabó G Jr (2001) P-Glycoprotein conformational changes detected by antibody competition. Eur J Biochem 268:2416–20

    Article  CAS  PubMed  Google Scholar 

  21. Regev R, Assaraf YG, Eytan GD (1999) Membrane fluidization by ether, other anesthetics, and certain agents abolishes P-glycoprotein ATPase activity and modulates efflux from multidrug resistant cells. Eur J Biochem 259:18–24

    Article  CAS  PubMed  Google Scholar 

  22. Cai C, Zhu H, Chen J (2004) Overexpression of caveolin-1 increases plasma membrane fluidity and reduces P-glycoprotein function in Hs578T/Dox. Biochem Biophys Res Commun 320:868–74

    Article  CAS  PubMed  Google Scholar 

  23. Wang YH, Li Y, Yang SL, Yang L (2005) Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach. J Chem Inf Model 45:750–7

    Article  CAS  PubMed  Google Scholar 

  24. Kim RB (2002) Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev 34:47–54

    Article  CAS  PubMed  Google Scholar 

  25. Choi CH (2005) ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int 5:30

    Article  PubMed Central  PubMed  Google Scholar 

  26. Bolton E, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. Chapter 12 IN annual reports in computational chemistry, volume 4. American Chemical Society, Washington

    Google Scholar 

  27. Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model builders using 639 X-Ray structures. J Chem Inf Comput Sci 34:1000–8

    Article  CAS  Google Scholar 

  28. Tajima Y, Nakagawa H, Tamura A, Kadioglu O, Satake K, Mitani Y, Murase H, Regasini LO, da Silva Bolzani V, Ishikawa T, Fricker G, Efferth T (2013) Nitensidine A, a guanidine alkaloid from Pterogyne nitens, is a novel substrate for human ABC transporter ABCB1. Phytomedicine [Epub ahead of print]

  29. Zeino M, Zhao Q, Eichhorn T, Hermann J, Müller R, Efferth T (2013) Molecular docking studies of myxobacterial disorazoles and tubulysins to tubulin. J Biosci Med 3:31–43

    Google Scholar 

  30. Hartmann J (2000) Choosing the correct statistical test. University of Alabama, USA, http://bama.ua.edu/~jleeper/627/choosestat.html, last retrieved: 12.12.2013.

  31. Wise JG (2012) Catalytic transitions in the human MDR1 P-glycoprotein drug binding sites. Biochemistry 51:5125–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Klepsch F, Chiba P, Ecker GF (2011) Exhaustive sampling of docking poses reveals binding hypotheses for propafenone type inhibitors of P-glycoprotein. PLoS Comput Biol 7:e1002036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Tang F, Ouyang H, Yang JZ, Borchardt RT (2004) Bidirectional transport of rhodamine 123 and Hoechst 33342, fluorescence probes of the binding sites on P-glycoprotein, across MDCKMDR1 cell monolayers. J Pharm Sci 93:1185–94

    Article  CAS  PubMed  Google Scholar 

  34. Loo TW, Clarke DM (2002) Location of the rhodamine-binding site in the human multidrug resistance P-glycoprotein. J Biol Chem 277:44332–8

    Article  CAS  PubMed  Google Scholar 

  35. Ferreira RJ, Ferreira MJ, dos Santos DJ (2013) Molecular docking characterizes substrate binding sites and efflux modulation mechanisms within P-glycoprotein. J Chem Inf Model 53:1747–60

    Article  CAS  PubMed  Google Scholar 

  36. Shapiro AB, Ling V (1997) Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur J Biochem 250:130–7

    Article  CAS  PubMed  Google Scholar 

  37. Loo TW, Clarke DM (2001) Defining the drug-binding site in the human multidrug resistance P-glycoprotein using a methanethiosulfonate analog of verapamil, MTS-verapamil. J Biol Chem 276:14972–9

    Article  CAS  PubMed  Google Scholar 

  38. Kothandan G, Gadhe CG, Madhavan T, Choi CH, Cho SJ (2011) Docking and 3D-QSAR (quantitative structure activity relationship) studies of flavones, the potent inhibitors of p-glycoprotein targeting the nucleotide binding domain. Eur J Med Chem 46:4078–88

    Article  CAS  PubMed  Google Scholar 

  39. Bansal T, Jaggi M, Khar RK, Talegaonkar S (2009) Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J Pharm Pharm Sci 12:46–78

    CAS  PubMed  Google Scholar 

  40. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30:2785–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

There is no conflict of interest. We are grateful to the German Academic Exchange Service (DAAD) and the National Research Institute, Sudan for stipends to M.Z. and M.E.M. S., respectively, as well as to the Johannes University, Mainz for an intramural PhD position to O.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Efferth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(PDF 52 kb)

Supplementary Table 2

(PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeino, M., Saeed, M.E.M., Kadioglu, O. et al. The ability of molecular docking to unravel the controversy and challenges related to P-glycoprotein—a well-known, yet poorly understood drug transporter. Invest New Drugs 32, 618–625 (2014). https://doi.org/10.1007/s10637-014-0098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-014-0098-1

Keyword

Navigation