Skip to main content

Advertisement

Log in

Potential mucolytic agents for mucinous ascites from pseudomyxoma peritonei

  • REVIEW
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Pseudomyxoma peritonei is a disease characterised by the accumulation of mucinous ascites. Thus far, cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC) has been shown to be effective at eradicating disease. Chemotherapy has been less effective, providing disease stabilization but not demonstrating significant treatment responses. Mucolytic is a potential class of drug that may be exploited in the chemical management of this disease. A variety of potential mucolytic agents are explored in this review providing evidence of basic biochemical evidence of its efficacy with potential translational application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Moran BJ, Cecil TD (2003) The etiology, clinical presentation and management of pseudomyxoma peritonei. Surg Oncol Clin N Am 12:585–603

    Article  PubMed  Google Scholar 

  2. Smeenk RM, van Velthuysen ML, Verwall VJ et al (2008) Appendiceal neoplasm and pseudomyxoma peritonei: a population based study. Eur J Surg Oncol 34:201–1966

    Article  Google Scholar 

  3. Mukerjee A, Parvaiz A, Cesil TD et al (2004) Pseudomyxoma peritonei usually originates from the appendix: a review of the evidence. Eur J Gynaecol Oncol 25:411–414

    Google Scholar 

  4. Yan TD, Links M, Xu ZY et al (2006) Cytoreductive surgery and perioperative intraperitoneal chemotherapy for pseudomyxoma peritonei from appendiceal mucinous neoplasm. Br J Surg 93:1270–1276

    Article  PubMed  CAS  Google Scholar 

  5. de Bree E, Witkamp AJ, Zoetmulder FA (2000) Peroperative hyperthermic intraperitoneal chemotherapy (HIPEC) for advanced gastric cancer. Eur J Surg Oncol 26:630–632

    Article  PubMed  Google Scholar 

  6. Smeenk RM, Bex A, Verwall VJ, Horenblas S et al (2006) Pseudomyxoma peritonei and the urinary tract: involment and treatment related complications. J Surg Oncol 93:20–23

    Article  PubMed  CAS  Google Scholar 

  7. Bevan KE, Mohamed F, Moran BJ (2010) Pseudomyxoma peritonei. World J Gastrointest Oncol 2:44–50

    Article  PubMed  Google Scholar 

  8. Hinson FI, Ambrose NS (1988) Pseudomyxoma peritonei. Br J Surg 85:1332–1339

    Article  Google Scholar 

  9. Sugarbaker PH, Chang D (1999) Results of treatment of 385 patients with peritoneal surface spread of appendiceal malignancy. Ann Surg Oncol 6:727–773

    Article  PubMed  CAS  Google Scholar 

  10. Moran B, Barrati D, Yan TD et al (2008) Consesus statement on the loco-regional treatment of appendiceal mucinous neoplasms with peritoneal dissemination. Pseudomyxoma peritonei. J Surg Oncol 98:277–282

    Article  PubMed  Google Scholar 

  11. Sugarbaker PH, Jablonski KA (1995) Prognostic features of 51 colorectal and 130 appendiceal cancer patients with peritoneal carcinomatosis treated with intraperitoneal hyperthermic chemotherapy. Ann Surg 221:124–132

    Article  PubMed  CAS  Google Scholar 

  12. Guner Z, Schmidt U, Dahlke MH, Schlitt HJ et al (2005) Cytoreductive surgery and intraperitoneal chemotherapy for pseudomyxoma peritonei. Int J Colorectal Dis 20:155–160

    Article  PubMed  CAS  Google Scholar 

  13. Duraisamy S, Kufe T, Ramasamy S, Kude D (2007) Evolution of human MUC1 oncoprotein. Int J Oncol 31:671–677

    PubMed  CAS  Google Scholar 

  14. Brayman M, Thatiah A, Carson DD (2004) MUC1: a multifunctional cell surface component of reproductive tissue epithelia. Reprod Biol Endocrinol 2:4

    Article  PubMed  Google Scholar 

  15. Duffy Mj, Shering S, Sherry M, McDermont E et al (2000) CA 15-3: a prognostic marker in breast cancer. Int J Biol Markers 15:330–333

    PubMed  CAS  Google Scholar 

  16. Sachdeva M, Mo YY (2010) MicroRNA-145 supresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res 70:378–387

    Article  PubMed  CAS  Google Scholar 

  17. McGukin M, Linden SK, Sutton P et al (2011) Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9:265–278

    Article  Google Scholar 

  18. Kim YD, Jeon JY, Woo HJ et al (2002) Interleukin -1β induces MUC2 gene expression and mucin secretion via activation of PKG-MEK/ERK and PI3K in human airway epithelial cells. J Kor Med Sci 17:765–771

    CAS  Google Scholar 

  19. Mejias-Luque R, Linden SK, Garrido M et al (2010) Inflammation modulates the expression of intestinal mucins MUC2 and MUC4 in gastric tumors. Oncogene 29:1753–1762

    Article  PubMed  CAS  Google Scholar 

  20. Thornton DJ, Sheehan JK (2004) From mucins to mucus: towards a more coherent understanding of this essential barrier. Proc Am Thorac Soc 1:54–61

    Article  PubMed  CAS  Google Scholar 

  21. Sheehan JK, Richardson PS, Fung DCK et al (1995) Analysis of respiratory mucus glycoproteins in athma: a detailed study from a patient who died in status asthmaticus. Am J Respir Cell Mol Biol 13:748–756

    PubMed  CAS  Google Scholar 

  22. Mantle M, Stewart G (1989) Intetinal mucins from normal subjects and patients with cystic fibrosis: variable contents of the disulphide bound 118 kDa glycoprotein and different reactivities with an anti-(118 kDA glycoprotein) antibody. Biochem J 259:243–253

    PubMed  CAS  Google Scholar 

  23. van Klinken BJW, Einerhand AWC, Buller HA et al (1998) The oligomerization of a family of four genetically clustered human gastrointestinal mucins. Glycobiology 8:67–75

    Article  PubMed  Google Scholar 

  24. Ferreira CR, Carvalho JP, Soares FA et al (2008) Mucinous ovarian tumors associated with pseudomyxoma peritonei of adenomucinosis type: immunohistochemical evidence that they are secondary tumors. Int J Gynecol Canc 18:59–65

    Article  CAS  Google Scholar 

  25. Mora CS, Liu H, McAvoy T et al (2008) Psudomyxoma peritonei: is disease progression related to microbial agents? a study of bacterial, MUC2 and MUC5AC expression in disseminated peritoneal adenomucinosis and peritoneal mucinous carcinomatosis. Ann Surg Oncol 15:1414–1423

    Article  Google Scholar 

  26. Leir SH, Pary S, Pallag TP et al (2005) Mucin glycosylation and sulphation in airway epithelial cells is not influenced by cystic fibrosis transmembrane conductance regulator expression. Am J Respir Cell Mol Biol 32:453–461

    Article  PubMed  CAS  Google Scholar 

  27. Thornton JM (1981) Disulphide bridges in globular proteins. J Mol Biol 151:261–287

    Article  PubMed  CAS  Google Scholar 

  28. Lethem MI, James SL, Marriott C (1990) The role of mucous glycoproteins in rheological properties of cystic fibrosis sputum. Ann Rev Respir Dis 142:1053–1058

    CAS  Google Scholar 

  29. Frates RC, Ramphal R, Scharfman A et al (1993) Altyered carbohydrate composition of salivary mucins from patients with cystic fibrosis and the adhesion of pseudimonas aeruginosa. Am J Respir Cell Mol Biol 9:323–334

    Google Scholar 

  30. Frates RC Jr, Kaizu TT, Last JA (1983) Mucus glycoproteins secreted by respiratory epithelial tissue from cystic fibrosis patients. Pediatr Res 17:30–34

    Article  PubMed  CAS  Google Scholar 

  31. Hill WG, Harper GS, Rozaklis T et al (1977) Sulfation of chondroitin/dermatan sulphate by cystic fibrosis pancreatic duct cells is not different from normal cells. Biochem Mol Med 62:85–94

    Article  Google Scholar 

  32. Smithies O (1965) Disulphide-bond cleavage and formation in proteins. Science 150:1595–1598

    Article  PubMed  CAS  Google Scholar 

  33. Sheffner AL, Medler EM, Jacobs LW et al (1964) he invitro reduction in viscosity of human tracheobronchial secretions by acetylcysteine. Am Rev Respir Dis 90:721–729

    PubMed  CAS  Google Scholar 

  34. Weller PH, Ingram D, Preece MA et al (1980) Controlled trial of intermittent aerosol therapy with sodium 2-mercaptoethane sulphonate in cystic fibrosis. Thorax 35:42–46

    Article  PubMed  CAS  Google Scholar 

  35. Rubin BK (2007) Mucolytics, expotorants and mucokinetic medications. Respir Care 52:859–865

    PubMed  Google Scholar 

  36. Wills PJ, Cole PJ (1996) Review: mucolytic and mucokinetic therapy. Pulm Pharmacol 9:197–204

    Article  PubMed  CAS  Google Scholar 

  37. Anfinsen CB, Haber E (1961) Studies on the reduction and reformation of protein disulfide bonds. J Biochem 236:1361–1363

    CAS  Google Scholar 

  38. Polevoda B, Sherman F (2000) Minireview:N-terminal acetylation of eukaryotic proteins. J Biol Chem 275:36479–36482

    Article  PubMed  CAS  Google Scholar 

  39. Matsubara M, Tathibana R, Hondo T et al (2005) Three cases of pseudomyxoma peritonei in which sodium bicarbonate was effective in removing mucus (in Japanese). Nihon Sankafujinkagakkai Kantorengo (Kanto J Obstet Gynecol) 42:427–432

    Google Scholar 

  40. Florence TM (1980) Degradation of protein disulphide bonds in dilute alkali. Biochem J 189:507–520

    PubMed  CAS  Google Scholar 

  41. Green DE, Vande Zande HD (1981) Universal energy principal in biological systems and the unity of bioenergetics. Proc Natl Acad Sci U S A 78:5344–5347

    Article  PubMed  CAS  Google Scholar 

  42. Shirasawa Y, Orita H, Ishida K et al (2008) Critical alkalosis following intraperitoneal irrigation with sodium bicarbonate in a patient with pseudomyxoma peritonei. J Anesth 22:278–281

    Article  PubMed  Google Scholar 

  43. Banz V, Gajanayake T, Matozan K et al (2009) Dextran sulphate modulated MAP kinase signalling and reduces endothelial injury in a rat arotic clamping model. J Vasc Surg 50:161–170

    Article  PubMed  Google Scholar 

  44. Sudo E, Boyd WA, King M (2000) Effect of dextran sulphate on tracheal mucociliary velocity in dogs. J Aerosol Med 13:96–97

    Article  Google Scholar 

  45. Balsamo R, Lanata L, Egan CG (1010) Mucoactive drugs (review). Eur Respir Rev 19:127–133

    Article  Google Scholar 

  46. Bahavani AL, Nisha J (2010) Dextran—the polysaccharide with versatile uses. Int J Pharm Biol Sci 1:569–573

    Google Scholar 

  47. Shinohara T, Misawa K, Sano H et al (2006) Pseudomyxoma peritonei due to mucinous cystadenocarcinoma in situ of the urachus presenting as inguinal hernia. Int J Clin Oncol 5:416–419

    Article  Google Scholar 

  48. Maeda R, Aso C, Nishikawa K et al (2007) Transient hyperglycaemia following intraperitoneal irrigation with 5% glucose in a patient with pseudomyxoma peritonei. Masiu 56:958–961

    Google Scholar 

  49. Roy WJ, Thomas BL, Horowitz IR (1997) Acute hyperglycaemia following intraperitoneal irrigation with 10% dextrose in a patient with pseudomyxoma peritonei. Gynaecol Oncol 65:360–362

    Article  Google Scholar 

  50. Sazanova IY, Houng AK, Chowdhry SA et al (2001) The mechanism ofb bacterial plasminogen activator intermediate between streptokinase and stphylokinase. J Biol Chem 276:12609–12613

    Article  Google Scholar 

  51. Madigan MR (1959) Correspondence; 788

  52. Henke MU, Ratjen F (2007) Mucolytic in cystic fibrosis. Paediatr Respir Rev 8:24–29

    Article  PubMed  Google Scholar 

  53. Vale JA, Meredith TJ (1981) Treatment of acetaminophen poisoning. Arch Int Med 131:394–396

    Article  Google Scholar 

  54. Decramer M, Rutten-van Molken M, Dekhuijzen PN et al (2005) Effects of N-acetyl cysteine on outcomes in chronic obstructive pulmonary diseases (bronchitis randomized on NAC cost utility study BRONCHUS) a randomized placebo controlled trial. Lancet 366:984

    Google Scholar 

  55. Tirouvanziam R, Conrad CK, Bottiglieris T et al (2006) High dose n-acetyl cysteine, a glutathione prodrug modulates inflammation in cystic fibrosis. PNAS 103:4628–4633

    Article  PubMed  CAS  Google Scholar 

  56. Fahy JV, Dickey BT (2010) Airway mucus function & disfunction (review). New Engl J Med 368:2233–2247

    Article  Google Scholar 

  57. William V, Robertson B, Ropes MW et al (1941) The degradation of mucins and polysaccharides by ascorbic acid and hydrogen peroxide. (The mechanism of peroxide reaction). Biochem J 35:903–908

    Google Scholar 

  58. Mantle M (1991) Effect of hydrogen peroxide, mild trypsin digestion and partial reduction on rat intestinal mucin and its disulphide bond 118 kDA glycoprotein. Biochem J 274:679–685

    PubMed  CAS  Google Scholar 

  59. Pillai K, Akhter J, Chua TC, et al. (2011) Mucolysis of compact PMP mucin with hydrogen peroxide and ascorbic acid. J Surg Res (in press)

  60. Chua TC, Akther J, Yao P et al (2009) In vivo model of pseudomyxoma peritonei for novel candidate drug delivery. Anticancer Res 29:4051–4056

    PubMed  Google Scholar 

Download references

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pillai, K., Akhter, J., Chua, T.C. et al. Potential mucolytic agents for mucinous ascites from pseudomyxoma peritonei. Invest New Drugs 30, 2080–2086 (2012). https://doi.org/10.1007/s10637-012-9797-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-012-9797-7

Keywords

Navigation