Skip to main content

Advertisement

Log in

Combination of ATP-competitive mammalian target of rapamycin inhibitors with standard chemotherapy for colorectal cancer

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

ATP-competitive mammalian target of rapamycin (mTOR) inhibitors are in early phase clinical trials. These novel targeted agents, including PP242, are mechanistically distinct from the allosteric, partial mTOR inhibitor, rapamycin. The goal of this study was to evaluate how PP242 best combines with standard chemotherapies for colorectal cancer (CRC), and which subsets of patients are most likely to benefit. The combination index for PP242 plus 5-fluorouracil, oxaliplatin, or irinotecan was determined in CRC cell lines with different mutational backgrounds. In KRAS mutant CRC cell lines, sensitivity to PP242 increases with co-mutation of PIK3CA. Mutation of p53 predicts resistance to chemotherapy, but not PP242. Efficacy of PP242 was comparable to that of standard chemotherapies over the dose range tested. Sensitivity or resistance to PP242 dictates relative synergy or antagonism, respectively, when PP242 is combined with 5-fluorouracil. The same trend exists for PP242 + oxaliplatin, but with a narrower dynamic range. Conversely potency of PP242 and the combination index for PP242 + irinotecan were unrelated, but synergy exists across all dose levels in PP242 and irinotecan sensitive, p53 wild-type cell lines. Overall, our in vitro analysis predicts that mutational status can be used to rank sensitivity to PP242 and standard chemotherapies. Single agent potency can in turn be used to predict the combination index in a drug-specific manner. Our data suggest a clinical trial to determine whether ATP-competitive mTOR inhibitors provide benefit in combination with standard chemotherapies for patients with PIK3CA mutant metastatic CRC, stratified by the presence or absence of KRAS co-mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

mTOR:

mammalian target of rapamycin

CRC:

colorectal cancer

PI3K:

phosphoinositide 3-kinase

PIK3CA:

gene encoding the PI3K protein

EGFR:

epidermal growth factor receptor

4EBP1:

eukaryotic initiation factor 4E-binding protein-1

CI:

combination index

Fa:

fraction affected

Fu:

fraction unaffected

DMSO:

dimethyl sulfoxide

5FU:

5-fluorouracil

References

  1. Apsel B, Blair JA, Gonzalez B et al (2008) Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol 4:691–699

    Article  PubMed  CAS  Google Scholar 

  2. Feldman ME, Apsel B, Uotila A et al (2009) Active site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biology 7:371–383

    Article  CAS  Google Scholar 

  3. Janes MR, Limon JJ, So L et al (2010) Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 16:205–213

    Article  PubMed  CAS  Google Scholar 

  4. Yu K, Shi C, Toral-Barza L et al (2010) Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res 70:621–631

    Article  PubMed  CAS  Google Scholar 

  5. Chresta CM, Davies BR, Hickson I et al (2010) AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 70:288–298

    Article  PubMed  CAS  Google Scholar 

  6. Benjamin D, Colombi M, Moroni C, Hall MN (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 10:868–880

    Article  PubMed  CAS  Google Scholar 

  7. American Cancer Society. Colorectal Cancer Facts & Figures 2011–2013. American Cancer Society, Atlanta, pp. 3, 8

  8. Parsons DW, Wang TL, Samuels Y et al (2005) Colorectal cancer: mutations in a signaling pathway. Nature 436:792

    Article  PubMed  CAS  Google Scholar 

  9. Allegra CJ, Jessup JM, Somerfield MR et al (2009) American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27:2091–2096

    Article  PubMed  Google Scholar 

  10. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Canc Cell 12:9–22

    Article  CAS  Google Scholar 

  11. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of AKT/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  PubMed  CAS  Google Scholar 

  12. O’Reilly KE, Rojo F, She QB et al (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates AKT. Cancer Res 66:1500–1508

    Article  PubMed  Google Scholar 

  13. Gulhati P, Bowen KA, Liu J et al (2011) mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res 71(9):3246–3256

    Article  PubMed  CAS  Google Scholar 

  14. Hsieh AC, Costa M, Zollo O et al (2010) Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 17:249–261

    Article  PubMed  CAS  Google Scholar 

  15. Schlieman MG, Fahy BN, Ramsamooj R, Beckett L, Bold RJ (2003) Incidence, mechanism and prognostic value of activated AKT in pancreas cancer. Br J Cancer 89:2110–2115

    Article  PubMed  CAS  Google Scholar 

  16. Ciardiello F, Caputo R, Bianco R et al (2000) Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 6:2053–2063

    PubMed  CAS  Google Scholar 

  17. Prewett MC, Hooper AT, Bassi R, Ellis LM, Waksal HW, Hicklin DJ (2002) Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal antibody IMC-C225 in combination with irinotecan (CPT-11) against human colorectal tumor xenografts. Clin Cancer Res 8:994–1003

    PubMed  CAS  Google Scholar 

  18. Morelli MP, Cascone T, Troiani T et al (2005) Sequence-dependent antiproliferative effects of cytotoxic drugs and epidermal growth factor receptor inhibitors. Ann Oncol Suppl 4:61–68

    Google Scholar 

  19. Cunningham D, Humblet Y, Siena S et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345

    Article  PubMed  CAS  Google Scholar 

  20. Bokemeyer C, Bondarenko I, Makhson A et al (2009) Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 27:663–671

    Article  PubMed  CAS  Google Scholar 

  21. Van Cutsem E, Köhne CH, Hitre E et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360:1408–1417

    Article  PubMed  Google Scholar 

  22. Tol J, Koopman M, Cats A et al (2009) Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 360:563–572

    Article  PubMed  CAS  Google Scholar 

  23. Zunder ER, Knight ZA, Houseman BT, Apsel B, Shokat KM (2008) Discovery of drug-resistant and drug-sensitizing mutations in the oncogenic PI3K isoform p110 alpha. Canc Cell 14:180–192

    Article  CAS  Google Scholar 

  24. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  25. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681

    Article  PubMed  CAS  Google Scholar 

  26. García-Martínez JM, Moran J, Clarke RG et al (2009) Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J 421:29–42

    Article  PubMed  Google Scholar 

  27. Milano G, Spano JP, Leyland-Jones B (2008) EGFR-targeting drugs in combination with cytotoxic agents: from bench to bedside, a contrasted reality. Br J Cancer 99:1–5

    Article  PubMed  CAS  Google Scholar 

  28. Perkins G, Lièvre A, Ramacci C et al (2010) Additional value of EGFR downstream signaling phosphoprotein expression to KRAS status for response to anti-EGFR antibodies in colorectal cancer. Int J Cancer 127:1321–1331

    Article  PubMed  CAS  Google Scholar 

  29. Sartore-Bianchi A, Martini M, Molinari F et al (2009) PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res 69(5):1851–1857

    Article  PubMed  CAS  Google Scholar 

  30. De Roock W, Claes B, Bernasconi D et al (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol (8):753–62

  31. Boyer J, McLean EG, Aroori S, Wilson P, McCulla A, Carey PD, Longley DB, Johnston PG (2004) Characterization of p53 wild-type and null isogenic colorectal cancer cell lines resistant to 5-fluorouracil, oxaliplatin, and irinotecan. Clin Cancer Res 10:2158–2167

    Article  PubMed  CAS  Google Scholar 

  32. McDermott U, Longley DB, Galligan L, Allen W, Wilson T, Johnston PG (2005) Effect of p53 status and STAT1 on chemotherapy-induced, Fas-mediated apoptosis in colorectal cancer. Cancer Res 65:8951–8960

    Article  PubMed  CAS  Google Scholar 

  33. Jacob S, Aguado M, Fallik D, Praz F (2001) The role of the DNA mismatch repair system in the cytotoxicity of the topoisomerase inhibitors camptothecin and etoposide to human colorectal cancer cells. Cancer Res 61:6555–6562

    PubMed  CAS  Google Scholar 

  34. Johnson SM, Gulhati P, Rampy BA et al (2010) Novel expression patterns of PI3K/AKT/mTOR signaling pathway components in colorectal cancer. J Am Coll Surg 210(5):767–776, 776–8

    Article  PubMed  Google Scholar 

  35. The Catalogue of Somatic Mutations in Cancer (COSMIC) (2011) Wellcome Trust Sanger Institute, Hinxton, UK. http://www.sanger.ac.uk/genetics/CGP/cosmic/

Download references

Acknowledgements

We are grateful to David Donner for editorial assistance and to Yi Liu, Pingda Ren, Christian Rommel, and Katti Jessen at Intellikine for helpful discussions.

Grant support

Funding was provided by a Conquer Cancer Foundation of the American Society of Clinical Oncology Young Investigator Award and the American Cancer Society Postdoctoral Fellowship 11-183-01-TBG (C.E.A) as well as the Howard Hughes Medical Institute (K.M.S.)

Disclosures

K.M.S. is a co-founder of Intellikine and serves on the Scientific Advisory Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chloe E. Atreya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Drug Potency Spectra (μM) (XLS 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atreya, C.E., Ducker, G.S., Feldman, M.E. et al. Combination of ATP-competitive mammalian target of rapamycin inhibitors with standard chemotherapy for colorectal cancer. Invest New Drugs 30, 2219–2225 (2012). https://doi.org/10.1007/s10637-012-9793-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-012-9793-y

Keywords

Navigation