Skip to main content
Log in

Quaternary ammonium-melphalan conjugate for anticancer therapy of chondrosarcoma: in vitro and in vivo preclinical studies

  • REVIEW
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Cartilage tumours present ongoing therapeutic challenges due to their chondrogenic extracellular matrix that potentially hampers drug delivery, their low percentage of dividing cells, and their poor vascularity. In this context, and based on the affinity of the quaternary ammonium moiety for proteoglycans (PG), we developed a strategy that uses the quaternary ammonium function to selectively deliver DNA alkylating agents to the cartilage tumour tissue. We engineered the quaternary ammonium derivative of melphalan (Mel-AQ) and assessed its antitumoural activity in vitro and in vivo. In vitro, micromolar concentrations of Mel-AQ inhibited the proliferation of human HEMC-SS chondrosarcoma and Saos-2 osteosarcoma cell lines. Moreover, 24-h incubation with 20 μM Mel-AQ induced a 2.5-fold increase in S population and a 1.5-fold increase in subG0G1 population compared to controls. In vivo, Mel-AQ demonstrated antitumour activity in the orthotopic model of primary Swarm rat chondrosarcoma. When given to chondrosarcoma-bearing rats (three doses of 16 μmol/kg at days 8, 12 and 16 post-implant), Mel-AQ demonstrated an optimal antitumour effect at day 43, when tumour cell growth inhibition peaked at 69%. Interestingly, the treatment protocol was proved well tolerated, since the animals showed no weight loss over the course of the study. This antitumoural effect was assessed in vivo by scintigraphic imaging using 99mTc-NTP 15–5 developed in our lab as a PG-targeting radiotracer, and tumour tissue was analyzed at study-end by biochemical PG assay with Alcian blue staining. Mel-AQ treatment led to a significant decrease in the PG content of tumoural tissue. These experimental results highlighted the promising antitumour potential of Mel-AQ as a PG-targeting strategy for therapeutic management of chondrosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gelderblom H, Hogendoorn PC, Dijkstra SD, van Rijswijk CS, Krol AD, Taminiau AH, Bovee JV (2008) The clinical approach towards chondrosarcoma. Oncologist 13:320–329

    Article  PubMed  Google Scholar 

  2. Riedel RFLN, Dodd L, Kirsch D, Martinez S, Brigman BE (2009) The clinical management of chondrosarcoma. Curr Treat Options Oncol 10:94–106

    Article  PubMed  Google Scholar 

  3. Bovee JV, Hogendoorn PC, Wunder JS, Alman BA (2010) Cartilage tumours and bone development: molecular pathology and possible therapeutic targets. Nat Rev Cancer 10:481–488

    Article  CAS  PubMed  Google Scholar 

  4. Juillerat-Jeanneret L, Schmitt F (2007) Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: looking for the grail. Med Res Rev 27:574–590

    Article  CAS  PubMed  Google Scholar 

  5. Chezal JM, Papon J, Labarre P, Lartigue C, Galmier MJ, Decombat C, Chavignon O, Maublant J, Teulade JC, Madelmont JC, Moins N (2008) Evaluation of radiolabeled (hetero)aromatic analogues of N-(2-diethylaminoethyl)-4-iodobenzamide for imaging and targeted radionuclide therapy of melanoma. J Med Chem 51:3133–3144

    Article  CAS  PubMed  Google Scholar 

  6. Rapp M, Giraud I, Maurizis JC, Galmier MJ, Madelmont JC (2003) Synthesis and in vivo biodisposition of [14C]-quaternary ammonium-melphalan conjugate, a potential cartilage-targeted alkylating drug. Bioconjug Chem 14:500–506

    Article  CAS  PubMed  Google Scholar 

  7. Aigner T (2002) Towards a new understanding and classification of chondrogenic neoplasias of the skeleton: biochemistry and cell biology of chondrosarcoma and its variants. Virchows Arch 441:219–230

    Article  CAS  PubMed  Google Scholar 

  8. Olsen GD, Chan EM, Riker WK (1975) Binding of d-tubocurarine di (methyl-14C) ether iodide and other amines to cartilage, chondroitin sulfate and human plasma proteins. J Pharmacol Exp Ther 195:242–250

    CAS  PubMed  Google Scholar 

  9. Maurizis JC, Ollier M, Nicolas C, Madelmont JC, Garrigue H, Veyre A (1992) In vitro binding of oxime acetylcholinesterase reactivators to proteoglycans synthesized by cultured chondrocytes and fibroblasts. Biochem Pharmacol 44:1927–1933

    Article  CAS  PubMed  Google Scholar 

  10. Larsson B, Nilsson M, Tjälve H (1981) The binding of inorganic and organic cations and H1 to cartilage in vitro. Biochem Pharmacol 30:2963–2970

    Article  CAS  PubMed  Google Scholar 

  11. Giraud I, Rapp M, Maurizis JC, Madelmont JC (2000) Application to a cartilage targeting strategy: synthesis and in vivo biodistribution of (14)C-labeled quaternary ammonium-glucosamine conjugates. Bioconjug Chem 11:212–218

    Article  CAS  PubMed  Google Scholar 

  12. Vidal A, Chezal JM, Mounetou E (2010) New quaternary ammonium oxicam derivatives: synthesis and in vitro antiosteoarthritis evaluation. Eur J Med Chem 45:405–410

    Article  CAS  PubMed  Google Scholar 

  13. Nicolas C, Borel M, Maurizis JC, Gallais N, Rapp M, Ollier M, Verny M, Madelmont JC (2000) Synthesis of N-quaternary ammonium [3H] and [99mTc]polyazamacrocycles, potential radiotracers for cartilage imaging. J Labelled Comp Radiopharm 43:585–594

    Article  CAS  Google Scholar 

  14. Giraud I, Rapp M, Maurizis JC, Madelmont JC (2002) Synthesis and in vitro evaluation of quaternary ammonium derivatives of chlorambucil and melphalan, anticancer drugs designed for the chemotherapy of chondrosarcoma. J Med Chem 45:2116–2119

    Article  CAS  PubMed  Google Scholar 

  15. O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426

    Article  PubMed  Google Scholar 

  16. Guide for the care and use of laboratory animals (1996) National Academy Press, Washington

  17. Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DA, Glennie MJ, Kelland LR, Robinson V, Stratford IJ, Tozer GM, Watson S, Wedge SR, Eccles SA (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102:1555–1577

    Article  CAS  PubMed  Google Scholar 

  18. Grimaud E, Damiens C, Rousselle AV, Passuti N, Heymann D, Gouin F (2002) Bone remodelling and tumour grade modifications induced by interactions between bone and swarm rat chondrosarcoma. Histol Histopathol 17:1103–1111

    CAS  PubMed  Google Scholar 

  19. Polin L, White K, Kushner J, Paluch J, Simpson C, Pugh S, Edelstein MK, Hazeldine S, Fontana J, LoRusso P, Horwitz JP, Corbett TH (2002) Preclinical efficacy evaluations of XK-469: dose schedule, route and cross-resistance behavior in tumor bearing mice. Invest New Drugs 20:13–22

    Article  CAS  PubMed  Google Scholar 

  20. Miot-Noirault E, Gouin F, Vidal A, Rapp M, Maublant J, Askienazy S, Chezal JM, Heymann D, Redini F, Moins N (2009) First preclinical imaging of primary cartilage neoplasm and its local recurrence using 99mTc-NTP 15–5 radiotracer. J Nucl Med 50:1541–1547

    Article  CAS  PubMed  Google Scholar 

  21. Bielawski K, Bielawska A (2008) Small-molecule based delivery systems for alkylating antineoplastic compounds. ChemMedChem 3:536–542

    Article  CAS  PubMed  Google Scholar 

  22. De Jong M, Maina T (2010) Of mice and humans: are they the same? Implications in cancer translational research. J Nucl Med 51:501–504

    Article  PubMed  Google Scholar 

  23. Hascall GK (1980) Ultrastructure of the chondrocytes and extracellular matrix of the swarm rat chondrosarcoma. Anat Rec 198:135–146

    Article  CAS  PubMed  Google Scholar 

  24. Breitkreutz D, Diaz de Leon L, Paglia L, Gay S, Swarm RL, Stern R (1979) Histological and biochemical studies of a transplantable rat chondrosarcoma. Cancer Res 39:5093–5100

    CAS  PubMed  Google Scholar 

  25. Hamm CA, Stevens JW, Xie H, Vanin EF, Morcuende JA, Abdulkawy H, Seftor EA, Sredni ST, Bischof JM, Wang D, Malchenko S, Bonaldo Mde F, Casavant TL, Hendrix MJ, Soares MB (2010) Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors. BMC Cancer 10:471

    Article  CAS  PubMed  Google Scholar 

  26. Kenan S, Steiner GC (1991) Experimental transplantation of the Swarm rat chondrosarcoma into bone: radiological and pathological studies. J Orthop Res 9:445–451

    Article  CAS  PubMed  Google Scholar 

  27. Sakimura R, Tanaka K, Yamamoto S, Matsunobu T, Li X, Hanada M, Okada T, Nakamura T, Li Y, Iwamoto Y (2007) The effects of histone deacetylase inhibitors on the induction of differentiation in chondrosarcoma cells. Clin Cancer Res 13:275–282

    Article  CAS  PubMed  Google Scholar 

Download references

Financial support

Institut National du Cancer (NoRO7022NN), Ligue Contre le Cancer Auvergne Région, Innovation Regional Fund (FRI2, OSEO), State-Region Planning Contract (CPER)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Peyrode.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyrode, C., Weber, V., David, E. et al. Quaternary ammonium-melphalan conjugate for anticancer therapy of chondrosarcoma: in vitro and in vivo preclinical studies. Invest New Drugs 30, 1782–1790 (2012). https://doi.org/10.1007/s10637-011-9663-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-011-9663-z

Keywords

Navigation