Skip to main content

Advertisement

Log in

Phase I study of vorinostat (suberoylanilide hydroxamic acid, NSC 701852) in combination with docetaxel in patients with advanced and relapsed solid malignancies

  • PHASE I STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Introduction Vorinostat is an inhibitor of histone deacetylase 6, which acetylates tubulin and stabilizes microtubules. Since taxanes also stabilize microtubules, we hypothesized that the administration of vorinostat followed by docetaxel should result in synergistic cytotoxicity. We conducted a phase I trial to determine the dose level of vorinostat plus docetaxel that would result in dose-limiting toxicity (DLT) in ≤30% of patients. Methods Eligible patients had castration-resistant prostate cancer (CRPC) or relapsed urothelial or non-small-cell lung cancer (NSCLC) after ≥1 prior chemotherapy regimen not containing docetaxel, performance status of 0–2, and adequate organ function. Vorinostat was given orally for 14 days beginning on day 1 of a 21-day cycle, with docetaxel given intravenously over 1 h on day 4. The time-to-event continuous reassessment method (TITE-CRM) guided dose escalation. Dose levels (DL) -1, 0, 1 and 2 corresponded to vorinostat 100, 100, 200 and 200 mg plus docetaxel 50, 60, 60, and 75 mg/m2, respectively. Pharmacokinetic studies were performed on days 1 and 4 of cycle 1. Results Twelve patients were enrolled: median age 65 years (range 49–74); 9 male, 3 female; 4 CRPC, 5 urothelial, 3 NSCLC. The median number of cycles administered was 2. Two patients were treated at DL -1, 4 at DL 0, 5 at DL 1 and 1 at DL 2. Five DLTs occurred in 5 patients: neutropenic fever/sepsis (2), anaphylactic reaction (1), myocardial infarction (1) and gastrointestinal bleed (1). Other toxicities included grade 3/4 neutropenia (4), peripheral neuropathy (1), and gastrointestinal bleed (n = 1). The estimated probability of DLT for DL -1 was 0.32 (90% posterior probability interval [PI], 0.11 to 0.53) for DL 0, 0.38 (90% PI, 0.16 to 0.58) and for DL 1, 0.43 (90% PI, 0.23 to 0.64). The trial was stopped due to excessive toxicity. No responses were noted. Conclusions The combination of vorinostat and docetaxel was poorly tolerated with excessive DLTs that required early study termination. No responses were identified. Vorinostat and docetaxel pharmacokinetics were comparable to previous reports in the literature, without obvious drug-drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–579

    Article  PubMed  CAS  Google Scholar 

  2. Arts J, de Schepper S, Van Emelen K (2003) Histone deacetylase inhibitors: from chromatin remodeling to experimental cancer therapeutics. Curr Med Chem 10:2343–2350

    Article  PubMed  CAS  Google Scholar 

  3. Hess-Stumpp H (2005) Histone deacetylase inhibitors and cancer: from cell biology to the clinic. Eur J Cell Biol 84:109–121

    Article  PubMed  CAS  Google Scholar 

  4. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  5. Xu W, Ngo L, Perez G et al (2006) Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitors. Proc Natl Acad Sci USA 103:15540–15545

    Article  PubMed  CAS  Google Scholar 

  6. Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5:981–989

    Article  PubMed  CAS  Google Scholar 

  7. Finnin MS, Donigian JR, Cohen A et al (1999) Structures of a histone deacetylase homologue bound to the TSA and vorinostat inhibitors. Nature 401:188–193

    Article  PubMed  CAS  Google Scholar 

  8. Marks P, Rifkind RA, Richon VM et al (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202

    Article  PubMed  CAS  Google Scholar 

  9. Kelly WK, O’Connor OA, Marks PA et al (2002) Histone deacetylase inhibitors: from target to clinical trials. Expert Opin Investig Drugs 11:1695–1713

    Article  PubMed  CAS  Google Scholar 

  10. Cohen LA, Marks PA, Rifkind RA et al (2002) Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, suppresses the growth of carcinogen-induced mammary tumors. Anticancer Res 22:1497–1504

    PubMed  CAS  Google Scholar 

  11. Bali P, Pranpat M, Swaby R et al (2005) Activity of suberoylanilide hydroxamic acid against human breast cancer cells with amplification of Her-2. Clin Cancer Res 11:6382–6389

    Article  PubMed  CAS  Google Scholar 

  12. Mann BS, Johnson JR, He K et al (2007) Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clin Cancer Res 13:2318–2322

    Article  PubMed  CAS  Google Scholar 

  13. Peart MJ, Tainton KM, Ruefli AA et al (2003) Novel mechanisms of apoptosis induced by histone deacetylase inhibitors. Cancer Res 63:4460–4471

    PubMed  CAS  Google Scholar 

  14. Butler LM, Agus DB, Scher HI et al (2000) Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 60:5165–5170

    PubMed  CAS  Google Scholar 

  15. Seo SK, Jin HO, Lee HC et al (2008) Combined effects of sulindac and suberoylanilide hydroxamic acid on apoptosis induction in human lung cancer cells. Mol Pharmacol 73:1005–1012

    Article  PubMed  CAS  Google Scholar 

  16. Krug LM, Curley T, Schwartz L et al (2006) Potential role of histone deacetylase inhibitors in mesothelioma: clinical experience with suberoylanilide hydroxamic acid. Clin Lung Cancer 7:257–261

    Article  PubMed  Google Scholar 

  17. Zhang C, Richon V, Ni X et al (2005) Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol 125:1045–1052

    Article  PubMed  CAS  Google Scholar 

  18. Palazzo A, Ackerman B, Gundersen G (2002) Cell biology: tubulin acetylation and cell motility. Nature 421:230

    Article  Google Scholar 

  19. Hubbert C, Guardiola A, Shao R et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Y, Li N, Caron C et al (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. Embo J 22:1168–1179

    Article  PubMed  CAS  Google Scholar 

  21. Ringel I, Horwitz SB (1991) Studies with RP 56976 (Taxotere): A semisynthetic analogue of taxol. J Natl Cancer Inst 83:288–291

    Article  PubMed  CAS  Google Scholar 

  22. Rao S, Krauss NE, Heerding JM et al (1994) 3′-(p-azidobenzamido)taxol photolabels the N-terminal 31 amino acids of beta-tubulin. J Biol Chem 269:3132–3134

    PubMed  CAS  Google Scholar 

  23. Rao S, Orr GA, Chaudhary AG et al (1995) Characterization of the Taxol Binding Site on the Microtubule: 2-(m-AZIDOBENZOYL)TAXOL PHOTOLABELS A PEPTIDE (AMINO ACIDS 217-231) of β-TUBULIN. J Biol Chem 270:20235–20238

    Article  PubMed  CAS  Google Scholar 

  24. Rao S, He L, Chakravarty S et al (1999) Characterization of the Taxol Binding Site on the Microtubule: IDENTIFICATION OF Arg282 IN β-TUBULIN AS THE SITE OF PHOTOINCORPORATION OF A 7-BENZOPHENONE ANALOGUE OF TAXOL. J Biol Chem 274:37990–37994

    Article  PubMed  CAS  Google Scholar 

  25. Nogales E, Wolf SG, Downing KH et al (1998) Structure of the |[alpha]||[beta]| tubulin dimer by electron crystallography. Nature 391:199–203

    Article  PubMed  CAS  Google Scholar 

  26. Zhou J, Giannakakou P (2005) Targeting microtubules for cancer chemotherapy. Curr Med Chem–Anti-Cancer Agents 5:65–71

    Article  CAS  Google Scholar 

  27. Blagosklonny MV, Robey R, Sackett DL et al (2002) Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol Cancer Ther 1:937–941

    PubMed  CAS  Google Scholar 

  28. Baker SD, Sparreboom A, Verweij J (2006) Clinical pharmacokinetics of docetaxel recent developments. Clin Pharmacokinet 45:235–252

    Article  PubMed  CAS  Google Scholar 

  29. Rubin EH, Agrawal NG, Friedman EJ et al (2006) A study to determine the effects of food and multiple dosing on the pharmacokinetics of vorinostat given orally to patients with advanced cancer. Clin Cancer Res 12:7039–7045

    Article  PubMed  CAS  Google Scholar 

  30. Cockroft DW, Gauld MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  Google Scholar 

  31. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  32. Goodman SN, Zahurak ML, Piantadosi S et al (1995) Some practical improvements in the continual reassessment method for phase I studies. Stat Med 14:1149–1161

    Article  PubMed  CAS  Google Scholar 

  33. O’Quigley J, Shen LZ (1996) Continual reassessment method: a likelihood approach. Biometrics 52:673–684

    Article  PubMed  Google Scholar 

  34. Cheung YK, Chappell R (2000) Sequential designs for phase I clinical trials with late-onset toxicities. Biometrics 56:1177–1182

    Article  PubMed  CAS  Google Scholar 

  35. Parise RA, Holleran JL, Beumer JH et al (2006) A liquid chromatography-electrospray ionization tandem mass spectrometric assay for quantitation of the histone deacetylase inhibitor, vorinostat (suberoylanilide hydroxamicacid, SAHA), an its metabolites in human serum. J Chromatogr B Analyt Technol Biomed Life Sci 840:108–115

    Article  PubMed  CAS  Google Scholar 

  36. Parise RA, Ramanathan RK, Zamboni WC et al (2003) Sensitive liquid chromatography-mass spectrometry assay fro quantitation of docetaxel and paclitaxel in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 783:231–236

    Article  PubMed  CAS  Google Scholar 

  37. Yeh KC, Kwan KC (1978) A comparison of numerical integrating algorithms by trapezoidal, lagrange, and spline approximation. J Pharmacokinet Biopharm 6:79–98

    Article  PubMed  CAS  Google Scholar 

  38. Rocci ML Jr, Jusko WJ (1983) LAGRAN program for area and moments in pharmacokinetic analysis. Comput Programs Biomed 16:203–216

    Article  PubMed  Google Scholar 

  39. Florian JA, Zamboni WC, Eiseman JL, et al. A physiologically-based pharmacokinetic model for docetaxel distribution in SCID mice bearing SKOV-3 human ovarian cancer xenografts. J Pharmacokinet Pharmacodynam (in press)

  40. D’Argenio DZ, Schumitzky A (1997) Adapt II user’s guide: pharmacokinetic/Pharmacodynamic systems analysis software. Los Angeles (CA): Biomedical Simulations Resource

  41. Kloft C, Wallin J, Henningsson A et al (2006) Population pharmacokinetic-pharmacodynamic model for neutropenia with patient subgroup identification: comparison across anticancer drugs. Clin Cancer Res 12:5481–5490

    Article  PubMed  CAS  Google Scholar 

  42. Bruno R, Hille D, Riva A et al (1998) Population pharmacokinetics/pharmacodynamics of docetaxel in phase II studies in patients with cancer. J Clin Oncol 16:187–196

    PubMed  CAS  Google Scholar 

  43. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  PubMed  CAS  Google Scholar 

  44. Yoo CB, Jones PA (2006) Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5:37–50

    Article  PubMed  CAS  Google Scholar 

  45. Owonikoko TK, Ramalingam SS, Kanterewicz B et al (2010) Vorinostat increases carboplatin and paclitaxel activity in non-small-cell lung cancer cells. Int J Cancer 126:743–755

    Article  PubMed  CAS  Google Scholar 

  46. Kelly WK, O’Connor OA, Krug LM et al (2005) Phase I study of an oral histone deacetylase inhibitor, Suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol 23:3923–3931

    Article  PubMed  CAS  Google Scholar 

  47. Cheung EM, Quinn DI, Tsao-Wei DD, et al (2008) Phase II study of vorinostat (Suberoylanilide Hydroxamic Acid, SAHA) in patients with advanced transitional cell urothelial cancer (TCC) after platinum-based therapy—California Cancer Consortium/University of Pittsburgh NCI/CTEP-sponsored trial. J Clin Oncol 26 (May 20 suppl) abstr 16058

    Google Scholar 

  48. Bradley DA, Rathkopf D, Dunn R et al (2009) Vorinostat in advanced prostate cancer patients progressing on prior chemotherapy (National Cancer Institute Trial 6862). Cancer 115:5541–5549

    Article  PubMed  CAS  Google Scholar 

  49. Shepherd FA, Dancey J, Ramlau R et al (2000) Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J Clin Oncol 18:2095–2103

    PubMed  CAS  Google Scholar 

  50. Fossella FV, DeVore R, Kerr RN et al (2000) Randomized phase III trial of docetaxel versus vinorelbine or ifosfamide in patients with advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy regimens. J Clin Oncol 18:2354–2362

    PubMed  CAS  Google Scholar 

  51. Ramalingam SS, Parise RA, Ramananthan RK et al (2007) Phase I and pharmacokinetic study of vorinostat, a histone deacetylase inhibitor, in combination with carboplatin and paclitaxel for advanced solid malignancies. Clin Cancer Res 13:3605–3610

    Article  PubMed  CAS  Google Scholar 

  52. Ramalingam SS, Maitland ML, Frankel P et al (2010) Carboplatin and paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J Clin Oncol 28:56–62

    Article  PubMed  CAS  Google Scholar 

  53. Traynor AM, Dubey S, Eickhoff JC et al (2009) Vorinostat (NSC# 701852) in patients with relapsed non-small cell lung cancer: a Wisconsin Oncology Network Phase II Study. J Thorac Oncol 4:522–526

    Article  PubMed  Google Scholar 

  54. Petrylak DP, Tangen CM, Hussain MH et al (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351:1513–1520

    Article  PubMed  CAS  Google Scholar 

  55. Cooper AL, Greenberg VL, Lancaster PS et al (2007) In vitro and in vivo histone deacetylase inhibitor therapy with suberoylanilide hydroxamic acid (SAHA) and paclitaxel in ovarian cancer. Gynecol Oncol 104:596–601

    Article  PubMed  CAS  Google Scholar 

  56. Miyanaga A, Gemma A, Noro R et al (2008) Anti-tumor activity of histone deacetylase inhibitors in non-small cell lung cancer cells: development of a molecular predictive model. Mol Cancer Ther 7:1923–1930

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan J. Schneider.

Additional information

Supported in part by a grant from Merck & Co., Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, B.J., Kalemkerian, G.P., Bradley, D. et al. Phase I study of vorinostat (suberoylanilide hydroxamic acid, NSC 701852) in combination with docetaxel in patients with advanced and relapsed solid malignancies. Invest New Drugs 30, 249–257 (2012). https://doi.org/10.1007/s10637-010-9503-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9503-6

Keywords

Navigation