Skip to main content
Log in

Sonodynamic and photodynamic mechanisms of action of the novel hypocrellin sonosensitizer, SL017: mitochondrial cell death is attenuated by 11, 12-epoxyeicosatrienoic acid

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Development of sonosensitizers for sonodynamic therapy (SDT) which selectively target abnormal cells can limit undesired side effects in chemotherapeutic applications. Hypocrellin-B (HB) derivatives are low molecular weight compounds which belong to the perylenequinone family of photosensitizing and sonosensitizing compounds. In this study, we investigate the cytotoxic mechanisms of a novel HB-derived photo- and sonosensitizer, SL017. Human fibroblast WI-38 cells were treated with SL017 (0 μM, 0.1 μM or 10 μM) and subjected to photodynamic therapy (PDT) or SDT. Studies demonstrate that maximal uptake of SL017 occurs within 30 min, with a mitochondrial subcellular localization. Activation of SL017 by either visible light or ultrasound resulted in significant increases in reactive oxygen species (ROS) production as measured by CM-H2-DCFDA (5-(and-6)-chloromethyl-2′7′-dichlorodihydrofluorescein diacetate acetyl ester). Co-administration of the antioxidant, ascorbic acid, attenuated ROS production. Low concentrations of SL017 (100 nM) induced a rapid (<90 s) loss of mitochondrial membrane potential (ΔΨm). Epoxyeicosatrienoic acids (EETs), cytochrome P450-derived metabolites of arachidonic acid (AA) involved in maintaining homeostasis and protection against cell injury, were able to attenuate loss of ΔΨm, however ascorbic acid was not. SL017 treatment resulted in increased mitochondrial fragmentation which followed loss of ΔΨm. Our studies demonstrate that SL017 targets mitochondria, triggering collapse of mitochondrial membrane potential, generates ROS and subsequently results in mitochondrial fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rockson SG, Lorenz DP, Cheong WF, Woodburn KW (2000) Photoangioplasty: an emerging clinical cardiovascular role for photodynamic therapy. Circulation 102(5):591–596

    PubMed  CAS  Google Scholar 

  2. Tachibana K, Feril LB Jr, Ikeda-Dantsuji Y (2008) Sonodynamic therapy. Ultrasonics 48(4):253–259. doi:10.1016/j.ultras.2008.02.003

    Article  PubMed  CAS  Google Scholar 

  3. Tang W, Liu Q, Wang X, Wang P, Zhang J, Cao B (2009) Potential mechanism in sonodynamic therapy and focused ultrasound induced apoptosis in sarcoma 180 cells in vitro. Ultrasonics 49(8):786–793. doi:10.1016/j.ultras.2009.06.002

    Article  PubMed  CAS  Google Scholar 

  4. Hiraoka W, Honda H, Feril LB Jr, Kudo N, Kondo T (2006) Comparison between sonodynamic effect and photodynamic effect with photosensitizers on free radical formation and cell killing. Ultrason Sonochem 13(6):535–542. doi:10.1016/j.ultsonch.2005.10.001

    Article  PubMed  CAS  Google Scholar 

  5. Rosenthal I, Sostaric JZ, Riesz P (2004) Sonodynamic therapy—a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem 11(6):349–363. doi:10.1016/j.ultsonch.2004.03.004

    PubMed  CAS  Google Scholar 

  6. Ali SM, Chee SK, Yuen GY, Olivo M (2001) Hypericin and hypocrellin induced apoptosis in human mucosal carcinoma cells. J Photochem Photobiol B 65(1):59–73

    Article  PubMed  CAS  Google Scholar 

  7. Miller GG, Brown K, Ballangrud AM, Barajas O, Xiao Z, Tulip J, Lown JW, Leithoff JM, Allalunis-Turner MJ, Mehta RD, Moore RB (1997) Preclinical assessment of hypocrellin b and hypocrellin b derivatives as sensitizers for photodynamic therapy of cancer: progress update. Photochem Photobiol 65(4):714–722

    Article  PubMed  CAS  Google Scholar 

  8. Roman RJ (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82(1):131–185. doi:10.1152/physrev.00021.2001

    PubMed  CAS  Google Scholar 

  9. Seubert JM, Sinal CJ, Graves J, DeGraff LM, Bradbury JA, Lee CR, Goralski K, Carey MA, Luria A, Newman JW, Hammock BD, Falck JR, Roberts H, Rockman HA, Murphy E, Zeldin DC (2006) Role of soluble epoxide hydrolase in postischemic recovery of heart contractile function. Circ Res 99(4):442–450. doi:10.1161/01.RES.0000237390.92932.37

    Article  PubMed  CAS  Google Scholar 

  10. Dhanasekaran A, Gruenloh SK, Buonaccorsi JN, Zhang R, Gross GJ, Falck JR, Patel PK, Jacobs ER, Medhora M (2008) Multiple antiapoptotic targets of the pi3k/akt survival pathway are activated by epoxyeicosatrienoic acids to protect cardiomyocytes from hypoxia/anoxia. Am J Physiol Heart Circ Physiol 294(2):H724–H735. doi:10.1152/ajpheart.00979.2007

    Article  PubMed  CAS  Google Scholar 

  11. Gauthier KM, Yang W, Gross GJ, Campbell WB (2007) Roles of epoxyeicosatrienoic acids in vascular regulation and cardiac preconditioning. J Cardiovasc Pharmacol 50(6):601–608. doi:10.1097/FJC.0b013e318159cbe3

    Article  PubMed  CAS  Google Scholar 

  12. Gross GJ, Hsu A, Falck JR, Nithipatikom K (2007) Mechanisms by which epoxyeicosatrienoic acids (eets) elicit cardioprotection in rat hearts. J Mol Cell Cardiol 42(3):687–691. doi:10.1016/j.yjmcc.2006.11.020

    Article  PubMed  CAS  Google Scholar 

  13. Zhang Y, El-Sikhry H, Chaudhary KR, Batchu SN, Shayeganpour A, Jukar TO, Bradbury JA, Graves JP, DeGraff LM, Myers P, Rouse DC, Foley J, Nyska A, Zeldin DC, Seubert JM (2009) Overexpression of cyp2j2 provides protection against doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol 297(1):H37–H46. doi:10.1152/ajpheart.00983.2008

    Article  PubMed  CAS  Google Scholar 

  14. Katragadda D, Batchu SN, Cho WJ, Chaudhary KR, Falck JR, Seubert JM (2009) Epoxyeicosatrienoic acids limit damage to mitochondrial function following stress in cardiac cells. J Mol Cell Cardiol 46(6):867–875. doi:10.1016/j.yjmcc.2009.02.028

    Article  PubMed  CAS  Google Scholar 

  15. Jiang JG, Chen CL, Card JW, Yang S, Chen JX, Fu XN, Ning YG, Xiao X, Zeldin DC, Wang DW (2005) Cytochrome p450 2j2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res 65(11):4707–4715. doi:10.1158/0008-5472.CAN-04-4173

    Article  PubMed  CAS  Google Scholar 

  16. Jiang JG, Ning YG, Chen C, Ma D, Liu ZJ, Yang S, Zhou J, Xiao X, Zhang XA, Edin ML, Card JW, Wang J, Zeldin DC, Wang DW (2007) Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Res 67(14):6665–6674. doi:10.1158/0008-5472.CAN-06-3643

    Article  PubMed  CAS  Google Scholar 

  17. Jakus J, Farkas O (2005) Photosensitizers and antioxidants: a way to new drugs? Photochem Photobiol Sci 4(9):694–698. doi:10.1039/b417254j

    Article  PubMed  CAS  Google Scholar 

  18. Estey EP, Brown K, Diwu ZJ, Lin JX, Lown JW, Miller GG, Moore RB, Tulip J, McPhee MS (1996) Hypocrellins as photosensitizers for photodynamic therapy: a screening evaluation and pharmacokinetic study. Cancer Chemother Pharmacol 37(4):343–350

    Article  PubMed  CAS  Google Scholar 

  19. Yumita N, Umemura S, Magario N, Umemura K, Nishigaki R (1996) Membrane lipid peroxidation as a mechanism of sonodynamically induced erythrocyte lysis. Int J Radiat Biol 69:397–404

    Article  PubMed  CAS  Google Scholar 

  20. Yumita N, Nishigaki R, Umemura K, Morse PD, Swartz HM, Cain CA, Umemura S (1994) Sonochemical activation of hematoporphyrin: an esr study. Radiat Res 138:171–176

    Article  PubMed  CAS  Google Scholar 

  21. Yumita N, Nishigaki R, Umemura K, Umemura S (1989) Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Jpn J Cancer Res 80:219–222

    PubMed  CAS  Google Scholar 

  22. El Maalouf J, Bera JC, Alberti L, Cathignol D, Mestas JL (2009) In vitro sonodynamic cytotoxicity in regulated cavitation conditions. Ultrasonics 49(2):238–243. doi:10.1016/j.ultras.2008.09.001

    Article  PubMed  CAS  Google Scholar 

  23. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252. doi:10.1016/j.cell.2006.06.010

    Article  PubMed  CAS  Google Scholar 

  24. Furt F, Moreau P (2009) Importance of lipid metabolism for intracellular and mitochondrial membrane fusion/fission processes. Int J Biochem Cell Biol 41(10):1828–1836. doi:10.1016/j.biocel.2009.02.005

    Article  PubMed  CAS  Google Scholar 

  25. Maack C, O’Rourke B (2007) Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 102(5):369–392. doi:10.1007/s00395-007-0666-z

    Article  PubMed  CAS  Google Scholar 

  26. Stanley WC, Morgan EE, Huang H, McElfresh TA, Sterk JP, Okere IC, Chandler MP, Cheng J, Dyck JR, Lopaschuk GD (2005) Malonyl-coa decarboxylase inhibition suppresses fatty acid oxidation and reduces lactate production during demand-induced ischemia. Am J Physiol Heart Circ Physiol 289(6):H2304–H2309. doi:10.1152/ajpheart.00599.2005

    Article  PubMed  CAS  Google Scholar 

  27. Ussher JR, Lopaschuk GD (2008) The malonyl coa axis as a potential target for treating ischaemic heart disease. Cardiovasc Res 79(2):259–268. doi:10.1093/cvr/cvn130

    Article  PubMed  CAS  Google Scholar 

  28. Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J, Wang X, Li K, Han P, Zheng M, Yin J, Wang W, Mattson MP, Kao JPY, Lakatta EG, Sheu S-s, Ouyang K, Chen J, Dirksen RT, Cheng H (2008) Superoxide flashes in single mitochondria. Cell 279–290

  29. Hanley PJ, Daut J (2005) K(atp) channels and preconditioning: a re-examination of the role of mitochondrial k(atp) channels and an overview of alternative mechanisms. J Mol Cell Cardiol 39(1):17–50. doi:10.1016/j.yjmcc.2005.04.002

    Article  PubMed  CAS  Google Scholar 

  30. Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the reperfusion injury salvage kinase (risk)-pathway. Cardiovasc Res 61(3):448–460. doi:10.1016/j.cardiores.2003.09.024

    Article  PubMed  CAS  Google Scholar 

  31. Hom J, S-s S (2009) Morphological dynamics of mitochondria—a special emphasis on cardiac muscle cells. J Mol Cell Cardiol 46:811–820

    Article  PubMed  CAS  Google Scholar 

  32. Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, Rossignol R (2007) Mitochondrial bioenergetics and structural network organization. J Cell Sci 120(Pt 5):838–848. doi:10.1242/jcs.03381

    Article  PubMed  CAS  Google Scholar 

  33. Davies VJ, Hollins AJ, Piechota MJ, Yip W, Davies JR, White KE, Nicols PP, Boulton ME, Votruba M (2007) Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet 16:1307–1318

    Article  PubMed  CAS  Google Scholar 

  34. Spector AA, Norris AW (2007) Action of epoxyeicosatrienoic acids on cellular function. Am J Physiol Cell Physiol 292(3):C996–C1012. doi:10.1152/ajpcell.00402.2006

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

JMS is the recipient of a New Investigator Award from the Heart and Stroke Foundation of Canada and a Health Scholar Award from the Alberta Heritage Foundation for Medical Research. This work was supported by Quest PharmaTech Inc. and in part by Canadian Institutes of Health Research Grant (JMS MOP79465).

Disclosure

RM Madiyalakan is the CEO of Quest PharmaTech Inc. GG Miller is a consultant to Quest PharmaTech Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Seubert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Sikhry, H.E., Miller, G.G., Madiyalakan, M.R. et al. Sonodynamic and photodynamic mechanisms of action of the novel hypocrellin sonosensitizer, SL017: mitochondrial cell death is attenuated by 11, 12-epoxyeicosatrienoic acid. Invest New Drugs 29, 1328–1336 (2011). https://doi.org/10.1007/s10637-010-9495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9495-2

Keywords

Navigation