Skip to main content

Advertisement

Log in

Geranylgeranyl diphosphate depletion inhibits breast cancer cell migration

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The objective of this study was to determine whether geranylgeranyl diphosphate synthase inhibition, and therefore geranylgeranyl diphosphate depletion, interferes with breast cancer cell migration. Digeranyl bisphosphonate is a specific geranylgeranyl diphosphate synthase inhibitor. We demonstrate that digeranyl bisphosphonate depleted geranylgeranyl diphosphate and inhibited protein geranylgeranylation in MDA-MB-231 cells. Similar to GGTI-286, a GGTase I inhibitor, digeranyl bisphosphate significantly inhibited migration of MDA-MB-231 cells as measured by transwell assay. Similarly, digeranyl bisphosphonate reduced motility of MDA-MB-231 cells in a time-dependent manner as measured by large scale digital cell analysis system microscopy. Digeranyl bisphosphonate was mildly toxic and did not induce apoptosis. Treatment of MDA-MB-231 cells with digeranyl bisphosphonate decreased membrane while it increased cytosolic RhoA localization. In addition, digeranyl bisphosphonate increased RhoA GTP binding in MDA-MB-231 cells. The specificity of geranylgeranyl diphosphonate synthase inhibition by digeranyl bisphosphonate was confirmed by exogenous addition of geranylgeranyl diphosphate. Geranylgeranyl diphosphate addition prevented the effects of digeranyl bisphosphonate on migration, RhoA localization, and GTP binding to RhoA in MDA-MB-231 cells. These studies suggest that geranylgeranyl diphosphate synthase inhibitors are a novel approach to interfere with cancer cell migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grundy SM (1988) HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. N Engl J Med 319:24–33

    Article  PubMed  CAS  Google Scholar 

  2. Holstein SA, Hohl RJ (2004) Isoprenoids: remarkable diversity of form and function. Lipids 39:293–309

    Article  PubMed  CAS  Google Scholar 

  3. van Beek E, Pieterman E, Cohen L, Lowik C, Papapoulos S (1999) Nitrogen-containing bisphosphonates inhibit isopentenyl pyrophosphate isomerase/farnesyl pyrophosphate synthase activity with relative potencies corresponding to their antiresorptive potencies in vitro and in vivo. Biochem Biophys Res Commun 255:491–494

    Article  PubMed  Google Scholar 

  4. Licata AA (2005) Discovery, clinical development, and therapeutic uses of bisphosphonates. Ann Pharmacother 39:668–677

    Article  PubMed  CAS  Google Scholar 

  5. Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269

    Article  PubMed  CAS  Google Scholar 

  6. Glomset JA, Farnsworth CC (1994) Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Annu Rev Cell Biol 10:181–205

    Article  PubMed  CAS  Google Scholar 

  7. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846

    Article  PubMed  CAS  Google Scholar 

  8. Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    Article  PubMed  CAS  Google Scholar 

  9. Sahai E, Marshall CJ (2002) RHO-GTPases and cancer. Nat Rev Cancer 2:133–142

    Article  PubMed  Google Scholar 

  10. Swanson KM, Hohl RJ (2006) Anti-cancer therapy: targeting the mevalonate pathway. Curr Cancer Drug Targets 6:15–37

    Article  PubMed  CAS  Google Scholar 

  11. Seiki S, Frishman WH (2009) Pharmacologic inhibition of squalene synthase and other downstream enzymes of the cholesterol synthesis pathway: a new therapeutic approach to treatment of hypercholesterolemia. Cardiol Rev 17:70–76

    Article  PubMed  Google Scholar 

  12. Sepp-Lorenzino L, Ma Z, Rands E, Kohl NE, Gibbs JB, Oliff A, Rosen N (1995) A peptidomimetic inhibitor of farnesyl:protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Res 55:5302–5309

    PubMed  CAS  Google Scholar 

  13. Gunning WT, Kramer PM, Lubet RA, Steele VE, End DW, Wouters W, Pereira MA (2003) Chemoprevention of benzo(a)pyrene-induced lung tumors in mice by the farnesyltransferase inhibitor R115777. Clin Cancer Res 9:1927–1930

    PubMed  CAS  Google Scholar 

  14. Zhang Z, Wang Y, Lantry LE, Kastens E, Liu G, Hamilton AD, Sebti SM, Lubet RA, You M (2003) Farnesyltransferase inhibitors are potent lung cancer chemopreventive agents in A/J mice with a dominant-negative p53 and/or heterozygous deletion of Ink4a/Arf. Oncogene 22:6257–6265

    Article  PubMed  CAS  Google Scholar 

  15. Rao S, Cunningham D, de Gramont A, Scheithauer W, Smakal M, Humblet Y, Kourteva G, Iveson T, Andre T, Dostalova J, Illes A, Belly R, Perez-Ruixo JJ, Park YC, Palmer PA (2004) Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J Clin Oncol 22:3950–3957

    Article  PubMed  CAS  Google Scholar 

  16. Van Cutsem E, van de Velde H, Karasek P, Oettle H, Vervenne WL, Szawlowski A, Schoffski P, Post S, Verslype C, Neumann H, Safran H, Humblet Y, Perez Ruixo J, Ma Y, Von Hoff D (2004) Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol 22:1430–1438

    Article  PubMed  Google Scholar 

  17. Lancet JE, Gojo I, Gotlib J, Feldman EJ, Greer J, Liesveld JL, Bruzek LM, Morris L, Park Y, Adjei AA, Kaufmann SH, Garrett-Mayer E, Greenberg PL, Wright JJ, Karp JE (2007) A phase 2 study of the farnesyltransferase inhibitor tipifarnib in poor-risk and elderly patients with previously untreated acute myelogenous leukemia. Blood 109:1387–1394

    Article  PubMed  CAS  Google Scholar 

  18. Harousseau JL, Lancet JE, Reiffers J, Lowenberg B, Thomas X, Huguet F, Fenaux P, Zhang S, Rackoff W, De Porre P, Stone R, Farnesyltransferase Inhibition Global Human Trials (FIGHT) Acute Myeloid Leukemia Study Group (2007) A phase 2 study of the oral farnesyltransferase inhibitor tipifarnib in patients with refractory or relapsed acute myeloid leukemia. Blood 109:5151–5156

    Article  PubMed  CAS  Google Scholar 

  19. Wiemer AJ, Hohl RJ, Wiemer DF (2009) The intermediate enzymes of isoprenoid metabolism as anticancer targets. Anticancer Agents Med Chem 9:526–542

    PubMed  CAS  Google Scholar 

  20. Vogt A, Sun J, Qian Y, Hamilton AD, Sebti SM (1997) The geranylgeranyltransferase-I inhibitor GGTI-298 arrests human tumor cells in G0/G1 and induces p21(WAF1/CIP1/SDI1) in a p53-independent manner. J Biol Chem 272:27224–27229

    Article  PubMed  CAS  Google Scholar 

  21. Kusama T, Mukai M, Tatsuta M, Matsumoto Y, Nakamura H, Inoue M (2003) Selective inhibition of cancer cell invasion by a geranylgeranyltransferase-I inhibitor. Clin Exp Metastasis 20:561–567

    Article  PubMed  CAS  Google Scholar 

  22. Kazi A, Carie A, Blaskovich MA, Bucher C, Thai V, Moulder S, Peng H, Carrico D, Pusateri E, Pledger WJ, Berndt N, Hamilton A, Sebti SM (2009) Blockade of protein geranylgeranylation inhibits Cdk2-dependent p27Kip1 phosphorylation on Thr187 and accumulates p27Kip1 in the nucleus: implications for breast cancer therapy. Mol Cell Biol 29:2254–2263

    Article  PubMed  CAS  Google Scholar 

  23. Kusama T, Mukai M, Tatsuta M, Nakamura H, Inoue M (2006) Inhibition of transendothelial migration and invasion of human breast cancer cells by preventing geranylgeranylation of Rho. Int J Oncol 29:217–223

    PubMed  CAS  Google Scholar 

  24. Xia Z, Tan MM, Wong WW, Dimitroulakos J, Minden MD, Penn LZ (2001) Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia 15:1398–1407

    Article  PubMed  CAS  Google Scholar 

  25. Coxon JP, Oades GM, Kirby RS, Colston KW (2004) Zoledronic acid induces apoptosis and inhibits adhesion to mineralized matrix in prostate cancer cells via inhibition of protein prenylation. BJU Int 94:164–170

    Article  PubMed  CAS  Google Scholar 

  26. Shull LW, Wiemer AJ, Hohl RJ, Wiemer DF (2006) Synthesis and biological activity of isoprenoid bisphosphonates. Bioorg Med Chem 14:4130–4136

    Article  PubMed  CAS  Google Scholar 

  27. Maalouf MA, Wiemer AJ, Kuder CH, Hohl RJ, Wiemer DF (2007) Synthesis of fluorescently tagged isoprenoid bisphosphonates that inhibit protein geranylgeranylation. Bioorg Med Chem 15:1959–1966

    Article  PubMed  CAS  Google Scholar 

  28. Wiemer AJ, Tong H, Swanson KM, Hohl RJ (2007) Digeranyl bisphosphonate inhibits geranylgeranyl pyrophosphate synthase. Biochem Biophys Res Commun 353:921–925

    Article  PubMed  CAS  Google Scholar 

  29. Wiemer AJ, Yu JS, Shull LW, Barney RJ, Wasko BM, Lamb KM, Hohl RJ, Wiemer DF (2008) Pivaloyloxymethyl-modified isoprenoid bisphosphonates display enhanced inhibition of cellular geranylgeranylation. Bioorg Med Chem 16:3652–3660

    Article  PubMed  CAS  Google Scholar 

  30. Wiemer AJ, Yu JS, Lamb KM, Hohl RJ, Wiemer DF (2008) Mono- and dialkyl isoprenoid bisphosphonates as geranylgeranyl diphosphate synthase inhibitors. Bioorg Med Chem 16:390–399

    Article  PubMed  CAS  Google Scholar 

  31. Dudakovic A, Wiemer AJ, Lamb KM, Vonnahme LA, Dietz SE, Hohl RJ (2008) Inhibition of geranylgeranyl diphosphate synthase induces apoptosis through multiple mechanisms and displays synergy with inhibition of other isoprenoid biosynthetic enzymes. J Pharmacol Exp Ther 324:1028–1036

    Article  PubMed  CAS  Google Scholar 

  32. Tong H, Wiemer AJ, Neighbors JD, Hohl RJ (2008) Quantitative determination of farnesyl and geranylgeranyl diphosphate levels in mammalian tissue. Anal Biochem 378:138–143

    Article  PubMed  CAS  Google Scholar 

  33. Tang Y, Olufemi L, Wang MT, Nie D (2008) Role of Rho GTPases in breast cancer. Front Biosci 13:759–776

    Article  PubMed  CAS  Google Scholar 

  34. Fritz G, Just I, Kaina B (1999) Rho GTPases are over-expressed in human tumors. Int J Cancer 81:682–687

    Article  PubMed  CAS  Google Scholar 

  35. Kleer CG, van Golen KL, Zhang Y, Wu ZF, Rubin MA, Merajver SD (2002) Characterization of RhoC expression in benign and malignant breast disease: a potential new marker for small breast carcinomas with metastatic ability. Am J Pathol 160:579–584

    Article  PubMed  CAS  Google Scholar 

  36. Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H, Harbeck N, Schmitt M, Lengyel E (2000) Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 19:3013–3020

    Article  PubMed  CAS  Google Scholar 

  37. Zhang Y, Cao R, Yin F, Hudock MP, Guo RT, Krysiak K, Mukherjee S, Gao YG, Robinson H, Song Y, No JH, Bergan K, Leon A, Cass L, Goddard A, Chang TK, Lin FY, Van Beek E, Papapoulos S, Wang AH, Kubo T, Ochi M, Mukkamala D, Oldfield E (2009) Lipophilic bisphosphonates as dual farnesyl/geranylgeranyl diphosphate synthase inhibitors: an X-ray and NMR investigation. J Am Chem Soc 131:5153–5162

    Article  PubMed  CAS  Google Scholar 

  38. Tong H, Holstein SA, Hohl RJ (2005) Simultaneous determination of farnesyl and geranylgeranyl pyrophosphate levels in cultured cells. Anal Biochem 336:51–59

    Article  PubMed  CAS  Google Scholar 

  39. Davis PJ, Kosmacek EA, Sun Y, Ianzini F, Mackey MA (2007) The large-scale digital cell analysis system: an open system for nonperturbing live cell imaging. J Microsc 228:296–308

    Article  PubMed  Google Scholar 

  40. Yang F, Mackey MA, Ianzini F, Gallardo G, Sonka M (2005) Cell segmentation, tracking, and mitosis detection using temporal context. Med Image Comput Comput Assist Interv 8:302–309

    PubMed  Google Scholar 

  41. Ianzini F, Bresnahan L, Wang L, Anderson K, Mackey MA (2002) The Large Scale Digital Cell Analysis System and its use in the quantitative analysis of cell populations. The Second Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology

  42. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    Article  PubMed  CAS  Google Scholar 

  43. Holstein SA, Tong H, Kuder CH, Hohl RJ (2009) Quantitative determination of geranyl diphosphate levels in cultured human cells. Lipids 44:1055–1062

    Article  PubMed  CAS  Google Scholar 

  44. Waiczies S, Bendix I, Prozorovski T, Ratner M, Nazarenko I, Pfueller CF, Brandt AU, Herz J, Brocke S, Ullrich O, Zipp F (2007) Geranylgeranylation but not GTP loading determines rho migratory function in T cells. J Immunol 179:6024–6032

    PubMed  CAS  Google Scholar 

  45. Lerner EC, Zhang TT, Knowles DB, Qian Y, Hamilton AD, Sebti SM (1997) Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene 15:1283–1288

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Michael A. Mackey and co-workers at the LSDCAS Core Research Facility at the Holden Comprehensive Cancer Center at the Roy J. and Lucille A. Carver College of Medicine at the University of Iowa.

This work was supported by the Roy J. Carver Charitable Trust as a Research Program of Excellence and the Roland W. Holden Family Program for Experimental Cancer Therapeutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Hohl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudakovic, A., Tong, H. & Hohl, R.J. Geranylgeranyl diphosphate depletion inhibits breast cancer cell migration. Invest New Drugs 29, 912–920 (2011). https://doi.org/10.1007/s10637-010-9446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9446-y

Keywords

Navigation