Skip to main content

Advertisement

Log in

Anti-tumor activity and mechanisms of a novel vascular disrupting agent, (Z)-3,4′,5-trimethoxylstilbene-3′-O-phosphate disodium (M410)

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Vascular disrupting agents (VDAs) have emerged as a new kind of anti-cancer drug in recent years. Structural modification of an active parent compound is an effective approach to developing new agents with more activity and fewer adverse reactions. In our study, six synthesized stilbene derivatives were screened for their cytotoxic activity against human tumor cells, and their mechanisms of action were investigated. The MTT assay was used to determine the anti-proliferative activity of these compounds. Polymerization of tubulin was detected by a tubulin assembly assay, and the cellular microtubule network was observed by immunocytochemical analyses. Cell-cycle distribution was detected by flow cytometry. A nude mouse model with xenografted colon cancer was used to demonstrate the in vivo anti-tumor activity, and microvessel density (MVD) was determined by immunohistochemistry. The expression levels of protein and mRNA were detected by Western blot and RT-PCR, respectively. Among the six newly synthesized compounds, (Z)-3,4′,5-trimethoxylstilbene-3′-O-phosphate disodium (M410) showed potent cytotoxic activity toward proliferating tumor cells and exhibited a similar cytotoxicity against multi-drug resistant (MDR) tumor cells. M410 inhibited bovine brain tubulin polymerization in a way similar to that of colchicine. In proliferating human umbilical vein endothelial cells (HUVECs), 20 nM of M410 induced cellular tubulin depolymerization within 4 h, which led to M phase arrest. Systemic administration of M410 at nontoxic doses in nude mice resulted in inhibition of tumor growth of human colon cancer LoVo xenografts. The tumor vessel density also decreased after M410 treatment, as determined by immunohistochemical staining for CD31. M410 downregulated hypoxia-inducible factor-1 alpha (HIF-1α) expression, reduced nuclear HIF-1α, and downregulated vascular endothelial cell growth factor (VEGF) mRNA. Our results indicate that M410 is a potent microtubule inhibitor that is cytotoxic, angiogenesis inhibiting and vascular targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  CAS  PubMed  Google Scholar 

  2. Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3(2):177–182

    Article  CAS  PubMed  Google Scholar 

  3. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4):1363–1380

    Article  CAS  PubMed  Google Scholar 

  4. Kerbel RS (1991) Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. Bioessays 13(1):31–36

    Article  CAS  PubMed  Google Scholar 

  5. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    Article  CAS  PubMed  Google Scholar 

  6. Levy AP, Levy NS, Wegner S, Goldberg MA (1995) Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 270(22):13333–13340

    Article  CAS  PubMed  Google Scholar 

  7. Bunn HF, Poyton RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76(3):839–885

    CAS  PubMed  Google Scholar 

  8. Berra E, Milanini J, Richard DE, Le Gall M, Viñals F, Gothié E, Roux D, Pagès G, Pouysségur J (2000) Signaling angiogenesis via p42/p44 MAP kinase and hypoxia. Biochem Pharmacol 60(8):1171–1178

    Article  CAS  PubMed  Google Scholar 

  9. Giordano FJ, Johnson RS (2001) Angiogenesis: the role of the microenvironment in flipping the switch. Curr Opin Genet Dev 11(1):35–40

    Article  CAS  PubMed  Google Scholar 

  10. Semenza GL (2002) Involvement of hypoxia-inducible factor 1 in human cancer. Intern Med 41(2):79–83

    Article  CAS  PubMed  Google Scholar 

  11. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13(1):9–22

    CAS  PubMed  Google Scholar 

  12. Jośko J, Gwóźdź B, Jedrzejowska-Szypułka H, Hendryk S (2000) Vascular endothelial growth factor (VEGF) and its effect on angiogenesis. Med Sci Monit 6(5):1047–1052

    PubMed  Google Scholar 

  13. Pettit GR, Singh SB, Hamel E, Lin CM, Alberts DS, Garcia-Kendall D (1989) Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia 45(2):209–211

    Article  CAS  PubMed  Google Scholar 

  14. Pettit GR, Temple C Jr, Narayanan VL, Varma R, Simpson MJ, Boyd MR, Rener GA, Bansal N (1995) Antineoplastic agents 322. synthesis of Combretastatin A-4 prodrugs. Anticancer Drug Des 10(4):299–309

    CAS  PubMed  Google Scholar 

  15. Stevenson JP, Rosen M, Sun W, Gallagher M, Haller DG, Vaughn D, Giantonio B, Zimmer R, Petros WP, Stratford M, Chaplin D, Young SL, Schnall M, O'Dwyer PJ (2003) Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-Day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow. J Clin Oncol 21(23):4428–4438

    Article  CAS  PubMed  Google Scholar 

  16. Tozer GM, Prise VE, Wilson J, Locke RJ, Vojnovic B, Stratford MR, Dennis MF, Chaplin DJ (1999) Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res 59(7):1626–1634

    CAS  PubMed  Google Scholar 

  17. Dark GG, Hill SA, Prise VE, Tozer GM, Pettit GR, Chaplin DJ (1997) Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res 57(10):1829–1834

    CAS  PubMed  Google Scholar 

  18. Beauregard DA, Thelwall PE, Chaplin DJ, Hill SA, Adams GE, Brindle KM (1998) Magnetic resonance imaging and spectroscopy of combretastatin A4 prodrug-induced disruption of tumour perfusion and energetic status. Br J Cancer 77(11):1761–1767

    Article  CAS  PubMed  Google Scholar 

  19. Beauregard DA, Hill SA, Chaplin DJ, Brindle KM (2001) The susceptibility of tumors to the antivascular drug combretastatin A4 phosphate correlates with vascular permeability. Cancer Res 61(18):6811–6815

    CAS  PubMed  Google Scholar 

  20. Malcontenti-Wilson C, Muralidharan V, Skinner S, Christophi C, Sherris D, O’Brien PE (2001) Combretastatin A4 prodrug study of effect on the growth and the microvasculature of colorectal liver metastases in a murine model. Clin Cancer Res 7(4):1052–1060

    CAS  PubMed  Google Scholar 

  21. Griggs J, Brindle KM, Metcalfe JC, Hill SA, Smith GA, Beauregard DA, Hesketh R (2001) Potent anti-metastatic activity of combretastatin-A4. Int J Oncol 19(4):821–825

    CAS  PubMed  Google Scholar 

  22. Rustin GJ, Galbraith SM, Anderson H, Stratford M, Folkes LK, Sena L, Gumbrell L, Price PM (2003) Phase I clinical trial of weekly combretastatin A4 phosphate: clinical and pharmacokinetic results. J Clin Oncol 21(15):2815–2822

    Article  CAS  PubMed  Google Scholar 

  23. Zou Y, Wang ZX, Zhang XJ, Zhou Y, He SJ, Lin HZ Water soluble phosphate ester salt of (Z)-3'-hydroxy-3,4',5-trimethoxystilbene, and its preparation method, pharmaceutical composition and uses. Chinese Patent Office, ZL 200610033788.1

  24. Zou Y, Xiao CF, Zhong RQ, Wei W, Huang WM, He SJ (2008) Synthesis of Combretastatin A-4 and Erianin. J Chem Res 6:354–356

    Article  Google Scholar 

  25. Hotchkiss KA, Ashton AW, Mahmood R, Russell RG, Sparano JA, Schwartz EL (2002) Inhibition of endothelial cell function in vitro and angiogenesis in vivo by docetaxel (Taxotere): association with impaired repositioning of the microtubule organizing center. Mol Cancer Ther 1(13):1191–1200

    CAS  PubMed  Google Scholar 

  26. Tozer GM, Prise VE, Wilson J, Cemazar M, Shan S, Dewhirst MW, Barber PR, Vojnovic B, Chaplin DJ (2001) Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: intravital microscopy and measurement of vascular permeability. Cancer Res 61(17):6413–6422

    CAS  PubMed  Google Scholar 

  27. Grosios K, Holwell SE, McGown AT, Pettit GR, Bibby MC (1999) In vivo and in vitro evaluation of combretastatin A-4 and its sodium phosphate prodrug. Br J Cancer 81(8):1318–1327

    Article  CAS  PubMed  Google Scholar 

  28. Nabha SM, Mohammad RM, Wall NR, Dutcher JA, Salkini BM, Pettit GR, Al-Katib AM (2001) Evaluation of combretastatin A-4 prodrug in a non-Hodgkin’s lymphoma xenograft model: preclinical efficacy. Anti Canc Drugs 12(1):57–63

    Article  CAS  Google Scholar 

  29. Medarde M, Ramos AC, Caballero E, Peláez-Lamamié de Clairac R, López JL, Grávalos DG, Feliciano AS (1999) Synthesis and pharmacological activity of diarylindole derivatives. Cytotoxic agents based on combretastatins. Bioorg Med Chem Lett 9(16):2303–2308

    Article  CAS  PubMed  Google Scholar 

  30. Cushman M, Nagarathnam D, Gopal D, Chakraborti AK, Lin CM, Hamel E (1991) Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization. J Med Chem 34(8):2579–2588

    Article  CAS  PubMed  Google Scholar 

  31. Nam NH, Kim Y, You YJ, Hong DH, Kim HM, Ahn BZ (2002) Synthesis and anti-tumor activity of novel combretastatins: combretocyclopentenones and related analogues. Bioorg Med Chem Lett 12(15):1955–1958

    Article  CAS  PubMed  Google Scholar 

  32. Galbraith SM, Chaplin DJ, Lee F, Stratford MR, Locke RJ, Vojnovic B, Tozer GM (2001) Effects of combretastatin A4 phosphate on endothelial cell morphology in vitro and relationship to tumour vascular targeting activity in vivo. Anticancer Res 21(1A):93–102

    CAS  PubMed  Google Scholar 

  33. Davis PD, Dougherty GJ, Blakey DC, Galbraith SM, Tozer GM, Holder AL, Naylor MA, Nolan J, Stratford MR, Chaplin DJ, Hill SA (2002) ZD6126: a novel vascular-targeting agent that causes selective destruction of tumor vasculature. Cancer Res 62(24):7247–7253

    CAS  PubMed  Google Scholar 

  34. Micheletti G, Poli M, Borsotti P, Martinelli M, Imberti B, Taraboletti G, Giavazzi R (2003) Vascular-targeting activity of ZD6126, a novel tubulin-binding agent. Cancer Res 63(7):1534–1537

    CAS  PubMed  Google Scholar 

  35. Chaplin DJ, Pettit GR, Hill SA (1999) Anti-vascular approaches to solid tumor therapy: evaluation of combretastatin A4 phosphate. Anticancer Res 19(1A):189–195

    CAS  PubMed  Google Scholar 

  36. Semenza GL (1998) Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8(5):588–594

    Article  CAS  PubMed  Google Scholar 

  37. Birner P, Schindl M, Obermair A, Breitenecker G, Oberhuber G (2001) Expression of hypoxia-inducible factor 1alpha in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clin Cancer Res 7(6):1661–1668

    CAS  PubMed  Google Scholar 

  38. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59(22):5830–5835

    CAS  PubMed  Google Scholar 

  39. Birner P, Schindl M, Obermair A, Plank C, Breitenecker G, Oberhuber G (2000) Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res 60(17):4693–4696

    CAS  PubMed  Google Scholar 

  40. Schindl M, Schoppmann SF, Samonigg H, Hausmaninger H, Kwasny W, Gnant M, Jakesz R, Kubista E, Birner P, Oberhuber G, Austrian Breast and Colorectal Cancer Study Group (2002) Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 8(6):1831–1837

    CAS  PubMed  Google Scholar 

  41. Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8(4 Suppl):S62–S67

    Article  CAS  PubMed  Google Scholar 

  42. Dachs GU, Steele AJ, Coralli C, Kanthou C, Brooks AC, Gunningham SP, Currie MJ, Watson AI, Robinson BA, Tozer GM (2006) Anti-vascular agent Combretastatin A-4-P modulates hypoxia inducible factor-1 and gene expression. BMC Cancer 6:280

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Science and Technology Program of Guangdong Province and Strategic Cooperation Program Between Guangdong Province and Chinese Academy of Sciences, P. R. China (2003B31603, 2006B35604002, 2009B091300125) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Jian Xian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, YC., Zou, Y., Ye, YL. et al. Anti-tumor activity and mechanisms of a novel vascular disrupting agent, (Z)-3,4′,5-trimethoxylstilbene-3′-O-phosphate disodium (M410). Invest New Drugs 29, 300–311 (2011). https://doi.org/10.1007/s10637-009-9366-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9366-x

Keywords

Navigation