Skip to main content
Log in

Chemopreventive doses of resveratrol do not produce cardiotoxicity in a rodent model of hepatocellular carcinoma

  • SHORT REPORT
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Hepatocellular carcinoma (HCC), one of the most lethal cancers, results in more than one million fatalities worldwide every year. In view of the limited therapeutic alternatives and poor prognosis of liver cancer, preventive control approaches, notably chemoprevention, have been considered to be the best strategy in lowering the present prevalence of the disease. Resveratrol, a naturally occurring antioxidant and antiinflammatory agent found in grapes and red wine, inhibits carcinogenesis with a pleiotropic mode of action. Recently, we have reported that dietary resveratrol significantly prevents chemically-induced liver tumorigenesis in rats. One of the mechanisms of resveratrol-mediated chemoprevention of hepatocarcinogenesis could be related to its antiinflammatory action through hepatic cyclooxygenase (COX-2) inhibition. Although several COX-2 inhibitors are known to exert chemopreventive efficacy, not all are considered ideal candidates for chemoprevention due to the risk of adverse cardiovascular events. Accordingly, the objective of the present study was to evaluate the role of resveratrol on cardiac performance during experimental hepatocarcinogenesis initiated with diethylnitrosamine and promoted by phenobarbital. Rats had free access to diet supplemented with resveratrol four weeks before the carcinogen injection and 14 weeks thereafter. The cardiotoxicity of resveratrol was assessed by monitoring the cardiac function using transthoracic echocardiography as well as Western blot analysis of cardiac tissue. Long-term dietary administration of resveratrol dose-dependently suppressed hepatic tumor multiplicity, the principal endpoint for evaluating the chemopreventive potential of a candidate agent. The chemopreventive effects of resveratrol were also reflected in histopathological assessment of hepatic tissues. Resveratrol did not exhibit any cardiotoxicity but rather improved the cardiac function in a dose-responsive fashion. Our results indicate that resveratrol-mediated chemoprevention of rat liver carcinogenesis is devoid of any adverse cardiovascular events. Resveratrol may be developed as a chemopreventive as well as therapeutic drug for human HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Feitelson MA, Sun B, Tufan NLS, Liu J, Pan J, Lian Z (2002) Genetic mechanisms of hepatocarcinogenesis. Oncogene 21:2593–2604

    Article  CAS  PubMed  Google Scholar 

  2. Llovet JM, Burroughs A, Buix J (2003) Hepatocellular carcinoma. Lancet 362:1907–1917

    Article  PubMed  Google Scholar 

  3. El-Serag HB (2004) Hepatocellular carcinoma: recent trends in the United States. Gastroenterology 127:S27–S34

    Article  PubMed  Google Scholar 

  4. American Cancer Society (2009) Cancer facts and figures 2009. American Cancer Society, Atlanta

    Google Scholar 

  5. Bartsch H, Montesano R (1984) Relevance of nitrosamines to human cancer. Carcinogenesis 5:1381–1393

    Article  CAS  PubMed  Google Scholar 

  6. Kensler TW, Egner PA, Wang JB, Zhu YR, Zhang BC, Lu PX et al (2004) Chemoprevention of hepatocellular carcinoma in aflatoxin endemic areas. Gastroenterology 127:S310–S318

    Article  CAS  PubMed  Google Scholar 

  7. Pang R, Tse E, Poon TP (2006) Molecular pathways in hepatocellular carcinoma. Cancer Lett 240:157–169

    Article  CAS  PubMed  Google Scholar 

  8. Schütte K, Bornscein J, Malfertheiner P (2009) Hepatocellular carcinoma—epidemiological trends and risk factors. Dig Dis 27:80–92

    PubMed  Google Scholar 

  9. Ribes J, Clèries R, Esteban L, Moreno V, Bosch FX (2008) The influence of alcohol consumption and hepatitis B and C infections on the risk of liver cancer in Europe. J Hepatol 49:233–242

    Article  CAS  PubMed  Google Scholar 

  10. Kensler TW, Quian GS, Chen JG, Groopman JD (2003) Translational strategies for cancer prevention in liver. J Natl Cancer Inst 3:321–329

    CAS  Google Scholar 

  11. Okuno M, Kojima S, Moriwaki H (2001) Chemoprevention of hepatocellular carcinoma: concept, progress and perspectives. J Gastroenterol Hepatol 16:1329–1335

    Article  CAS  PubMed  Google Scholar 

  12. Yates MS, Kensler TW (2007) Keap1 eye on the target: chemoprevention of liver cancer. Acta Pharmacol Sin 28:1331–1342

    Article  CAS  PubMed  Google Scholar 

  13. Lippman SM, Hong WK (2002) Cancer chemoprevention science and practice. Cancer Res 62:5119–5125

    CAS  PubMed  Google Scholar 

  14. World Cancer Research Fund/American Institute for Cancer Research (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. AICR, Washington

    Google Scholar 

  15. Naithani R, Huma LC, Moriarty RM, McCormick DL, Mehta RG (2008) Comprehensive review of cancer chemopreventive agents evaluated in experimental carcinogenesis models and clinical trials. Curr Med Chem 15:1044–1071

    Article  CAS  PubMed  Google Scholar 

  16. Mann CD, Neal CP, Garcea G, Manson MM, Dennison AR, Berry DP (2009) Phytochemicals as potential chemopreventive and chemotherapeutic agents in hepatocarcinogenesis. Eur J Cancer Prev 18:13–25

    Article  CAS  PubMed  Google Scholar 

  17. Harikumar KB, Aggarwal BB (2008) Resveratrol, a multitargeted agent for age associated chronic diseases. Cell cycle 7:1020–1037

    Article  CAS  PubMed  Google Scholar 

  18. Fremont L (2000) Biological effects of resveratrol. Life Sci 66:663–673

    Article  CAS  PubMed  Google Scholar 

  19. Kopp P (1998) Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the ‘French paradox’? Eur J Endocrinol 138:619–620

    Article  CAS  PubMed  Google Scholar 

  20. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  PubMed  Google Scholar 

  21. Shankar S, Singh G, Srivastava RK (2007) Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Front Biosci 12:4839–4854

    Article  CAS  PubMed  Google Scholar 

  22. Saiko P, Szakmary A, Jaeger W, Szekeres T (2008) Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat Res 658:68–94

    Article  CAS  PubMed  Google Scholar 

  23. Shakibaei M, Harikumar KB, Aggarwal BB (2009) Resveratrol addiction: to die or not to die. Mol Nutr Food Res 53:115–128

    Article  CAS  PubMed  Google Scholar 

  24. Athar M, Back JH, Kopelovich L, Bickers DR, Kim AL (2009) Multiple molecular targets of resveratrol: anti-carcinogenic mechanisms. Arch Biochem Biophys 486:95–102

    Article  CAS  PubMed  Google Scholar 

  25. Pirola L, Fröjdö S (2008) Resveratrol: one molecule, many targets. IUBMB Life 60:323–332

    Article  CAS  PubMed  Google Scholar 

  26. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24:2783–2840

    CAS  PubMed  Google Scholar 

  27. Kundu JK, Surh Y-J (2008) Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett 269:243–261

    Article  CAS  PubMed  Google Scholar 

  28. Bishayee A (2009) Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res 2:409–418

    Article  CAS  Google Scholar 

  29. Bishayee A, Dhir N (2009) Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: inhibition of cell proliferation and induction of apoptosis. Chem-Biol Interact 179:131–144

    Article  CAS  PubMed  Google Scholar 

  30. Penumathsa SV, Maulik N (2009) Resveratrol: a promising agent in promoting cardioprotection against coronary heart disease. Can J Physiol Pharmacol 87:275–286

    Article  CAS  PubMed  Google Scholar 

  31. Ray PS, Maulik G, Cordis GA, Bertelli AA, Bertelli A, Das DK (1999) The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. Free Radic Biol Med 27:160–169

    Article  CAS  PubMed  Google Scholar 

  32. Bradamante S, Piccinini F, Barenghi L, Bertelli AA, De Jonge R, Beemster P et al (2000) Does resveratrol induce pharmacological preconditioning? Int J Tissue React 22:1–4

    CAS  PubMed  Google Scholar 

  33. Hattori R, Otani H, Maulik N, Das DK (2002) Pharmacological preconditioning with resveratrol: role of nitric oxide. Am J Physiol Heart Circ Physiol 282:H1988–H1995

    CAS  PubMed  Google Scholar 

  34. Hung LM, Su MJ, Chen JK (2004) Resveratrol protects myocardial ischemia-reperfusion injury through both NO-dependent and NO-independent mechanisms. Free Radic Biol Med 36:774–781

    Article  CAS  PubMed  Google Scholar 

  35. Chen CK, Pace-Asciak CR (1996) Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta. Gen Pharmacol 27:363–366

    CAS  PubMed  Google Scholar 

  36. Bertelli AA, Giovannini L, Giannessi D, Migliori M, Bernini W, Fregoni M et al (1995) Antiplatelet activity of synthetic and natural resveratrol in red wine. Int J Tissue React 17:1–3

    CAS  PubMed  Google Scholar 

  37. Das S, Das DK (2007) Anti-inflammatory responses of resveratrol. Inflamm Allergy Drug Targets 6:168–173

    Article  CAS  PubMed  Google Scholar 

  38. Olson ER, Naugle JE, Zhang X, Bomser JA, Meszaros JG (2005) Inhibition of cardiac fibroblast proliferation and myofibroblast differentiation by resveratrol. Am J Physiol Heart Circ Physiol 288:H1131–H1138

    Article  CAS  PubMed  Google Scholar 

  39. Das S, Fraga CG, Das DK (2006) Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkappaB. Free Radic Res 40:1066–1075

    Article  CAS  PubMed  Google Scholar 

  40. Dudley J, Das S, Mukherjee S, Das DK (2009) Resveratrol, a unique phytoalexin present in red wine, delivers either survival signal or death signal to the ischemic myocardium depending on dose. J Nutr Biochem 20:443–452

    Article  CAS  PubMed  Google Scholar 

  41. Wu T (2006) Cyclooxygenase-2 in hepatocellular carcinoma. Cancer Treat Rev 32:28–44

    Article  CAS  PubMed  Google Scholar 

  42. Yildirim Y, Ozyilkan O, Bilezikci B, Akcali Z, Haberal M (2008) Lack of influence of cyclooxygenase-expression in hepatocellular carcinomas on patient survival. Asian Pacific J Cancer Prev 9:295–298

    Google Scholar 

  43. Giannitrapani L, Ingrao S, Soresi M, Maria Florena A, La Spada E, Sandonato L et al (2009) Cyclooxygenase-2 expression in chronic liver diseases and hepatocellular carcinoma. Ann NY Acad Sci 1155:293–299

    Article  CAS  PubMed  Google Scholar 

  44. Hu K-Q (2002) Rationale and feasibility of chemoprevention of hepatocellular carcinoma by cyclooxygenase-2 inhibitors. J Lab Clin Med 139:234–243

    Article  CAS  PubMed  Google Scholar 

  45. Koga H (2003) Hepatocelluar carcinoma: is there a potential for chemoprevention using cyclooxygenase-2 inhibitors. Cancer 98:661–667

    Article  CAS  PubMed  Google Scholar 

  46. Bishayee A, Waghray A, Lotey R, Barnes KF, Darvesh AS, Bhatia D, Carroll RT (2009) Mechanisms of resveratrol-mediated chemoprevention of hepatocellular carcinogenesis: suppression of oxidative stress and inflammation. Eighth Annual International Conference on Frontiers in Cancer Prevention Research, December 6–9, 2009, Houston, TX, USA

  47. Cervello M, Montalto G (2006) Cyclooxygenase in hepatocellular carcinoma. World J Gastroenterol 12:5113–5121

    CAS  PubMed  Google Scholar 

  48. Fujimura T, Ohta T, Oyama K, Miyashita T, Miwa K (2007) Cycloxygenase-2 (COX-2) in carcinogenesis and selective COX-2 inhibitors for chemoprevention in gastrointestinal cancers. J Gastrointest Cancer 38:78–82

    Article  CAS  PubMed  Google Scholar 

  49. Yona D, Arber N (2004) Coxibs and cancer prevention. J Cardiovasc Pharmacol 47:S76–S81

    Article  Google Scholar 

  50. Niles RM, Cook CP, Meadows GG, Fu Y-M, McLaughlin JL, Rankin GO (2006) Resveratrol is rapidly metabolized in athymic (Nu/Nu) mice and does not inhibit human melanoma xenograft tumor growth. J Nutr 136:2542–2546

    CAS  PubMed  Google Scholar 

  51. Bushan KM, Rao GV, Soujanya T, Rao VJ, Saha S, Samanta A (2001) Photochemical E (trans)–>Z (cis) isomerization in substituted 1-naphthylacrylates. J Org Chem 66:681–688

    Article  CAS  PubMed  Google Scholar 

  52. Bishayee A, Roy S, Chatterjee M (1999) Characterization of selective induction and alteration of xenobiotic biotransforming enzymes by vanadium during diethylnitrosamine-induced chemical rat liver carcinogenesis. Oncol Res 11:41–53

    CAS  PubMed  Google Scholar 

  53. Bishayee A, Sarkar A, Chatterjee M (2000) Further evidence for chemopreventive potential of β-carotene against experimental hepatocarcinogenesis: diethylnitrosamine-initiated and phenobarbital promoted hepatocarcinogenesis is prevented more effectively by β-carotene than by retinoic acid. Nutr Cancer 37:89–98

    Article  CAS  PubMed  Google Scholar 

  54. Bishayee A, Chatterjee M (1995) Inhibition of altered liver cell foci and persistent nodule growth by vanadium during diethylnitrosamine-induced hepatocarcinogenesis in rats. Anticancer Res 15:455–462

    CAS  PubMed  Google Scholar 

  55. Stewart HL, Williams GM, Keysser CH, Lombart LS, Montali RJ (1980) Histological typing of liver tumors of the rat. J Natl Cancer Inst 64:177–204

    Google Scholar 

  56. Sahn DJ, DeMaria A, Kisslo J, Weyman A (1978) Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 58:1072–1083

    CAS  PubMed  Google Scholar 

  57. Bishayee A, Chatterjee M (1995) Inhibitory effect of vanadium on rat liver carcinogenesis initiated with diethylnitrosamine and promoted by phenobarbital. Brit J Cancer 71:1214–1220

    Article  CAS  PubMed  Google Scholar 

  58. Chakraborty T, Chatterjee A, Rana A, Dhachinamoorthi D, Kumar PA, Chatterjee M (2007) Carcinogen-induced early molecular events and its implication in the initiation of chemical hepatocarcinogenesis in rats: chemopreventive role of vanadium on this process. Biochim Biophys Acta 1772:48–59

    CAS  PubMed  Google Scholar 

  59. Lee JS, Chu IS, Mikaelyan A, Calvisi DF, Heo J, Reddy JK, Thorgeirsson SS (2004) Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genetics 36:1306–1311

    Article  CAS  Google Scholar 

  60. Farber E, Sarma DS (1987) Hepatocarcinogenesis: a dynamic cellular perspective. Lab Invest 56:4–22

    CAS  PubMed  Google Scholar 

  61. Williams GM (1980) The pathogenesis of rat liver cancer caused by chemical carcinogens. Biochim Biophys Acta 605:167–189

    CAS  PubMed  Google Scholar 

  62. Chen T, Hwang H, Rose ME, Nines RG, Stoner GD (2006) Chemopreventive properties of black raspberries in N-nitrosomethylbenzylamine-induced rat esophageal tumorigenesis: down-regulation of cyclooxygenase-2, inducible nitric oxide synthase, and c-Jun. Cancer Res 66:2853–2859

    Article  CAS  PubMed  Google Scholar 

  63. Di Stefano G, Fiume L, Bolondi L, Lanza M, Pariali M, Chieco P (2005) Enhanced uptake of lactosaminated human albumin by rat hepatocarcinomas: implications for an improved chemotherapy of primary liver tumours. Liver Int 25:854–860

    Article  PubMed  Google Scholar 

  64. Waitzberz DL, Goncalves EL, Faintuch J, Bevilacqua LR, Rocha CL, Cdogni AM (1989) Effects of diets with different protein levels on the growth of Walker 256 carcinosarcoma in rats. Brazil J Med Biol Res 22:447–455

    Google Scholar 

  65. Husting SD, Kari FW (1999) The anti-carcinogenic effects of dietary restriction: mechanisms and future directions. Mutat Res 443:235–249

    Google Scholar 

  66. Whitsett T, Carpenter M, Lamartiniere CA (2006) Resveratrol, but not EGCG, in the diet suppresses DMBA-induced mammary cancer in rats. J Carcinog 5:15

    Article  PubMed  Google Scholar 

  67. Crowell JA, Korytko PJ, Morrissey RL, Booth TD, Levine BS (2004) Resveratrol-associated renal toxicity. Toxicol Sci 82:614–619

    Article  CAS  PubMed  Google Scholar 

  68. Williams LD, Burdock GA, Edwards JA, Beck M, Bausch J (2009) Safety studies conducted on high-purity trans-resveratrol in experimental animals. Food Chem Toxicol 47:2170–2182

    Article  CAS  PubMed  Google Scholar 

  69. Bombardier C, Laine L, Reicin A, Shapiro D, Burgos-Vargas R, Davis B et al (2000) Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. N Eng J Med 343:1520–1528

    Article  CAS  Google Scholar 

  70. Mamdani M, Juurlink DN, Lee DS, Rochon PA, Kopp A, Naglie G et al (2004) Cyclo-oxygenase-2 inhibitors versus non-selective non-steroidal anti-inflammatory drugs and congestive heart failure outcomes in elderly patients: a population-based cohort study. Lancet 363:1751–1756

    Article  CAS  PubMed  Google Scholar 

  71. Solomon DH, Schneeweiss S, Glynn RJ, Kiyota Y, Lenin R, Mogun H (2004) Relationship between selective cyclooxygenase-2 inhibitors and acute myocardial infarction in older adults. Circulation 109:2068–2073

    Article  CAS  PubMed  Google Scholar 

  72. Baron JA, Sandler RS, Bresalier RS, Quan H, Riddell R, Lanas A et al (2006) A randomized trial of rofecoxib for the chemoprevention of colorectal adenomas. Gastroenterology 131:1674–1682

    Article  CAS  PubMed  Google Scholar 

  73. Bertagnolli MM, Eagle CJ, Zauber AG, Redston M, Solomon SD, Kim K et al (2006) Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med 355:873–884

    Article  CAS  PubMed  Google Scholar 

  74. Burstein B, Majuy A, Clement R, Gosselin H, Poulin F, Ethier N et al (2007) Effects of resveratrol treatment on cardiac remodeling following myocardial infarction. J Pharmacol Exp Ther 323:916–23

    Article  CAS  PubMed  Google Scholar 

  75. Lin JF, Lin SM, Chih CL, Nien MW, Su HH, Hu BR, Huang SS, Tsai SK (2008) Resveratrol reduces infarct size and improves ventricular function after myocardial ischemia in rats. Life Sci 89:313–317

    Article  Google Scholar 

  76. Juric D, Wojciechowski P, Das DK, Netticadan T (2007) Prevention of concentric hypertrophy and diastolic impairment in aortic-banded rats treated with resveratrol. Am J Physiol Heart Circ Physiol 292:H2138–H2143

    Article  CAS  PubMed  Google Scholar 

  77. Chan AY, Dolinsky VW, Soltys CL, Viollet B, Baksh S, Light PE et al (2008) Resveratrol inhibits cardiac hypertrophy via AMP-activated kinase and Akt. J Biol Chem 283:24194–24201

    Article  CAS  PubMed  Google Scholar 

  78. Tatlidede E, Sehirli O, Velioğlu-Oğünc A, Cetinel S, Yeğen BC, Yarat A et al (2009) Resveratrol treatment protects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage. Free Radic Res 43:195–205

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors like to thank William M. Chilian, Ph.D., for providing infrastructural facilities and helpful suggestions for echocardiograpy study, Cornelis Van der Schyf, D.Sc., DTE, for constant encouragement, and Cindy L. Fobes for providing the care and maintenance of the animals. We also thank Altaf S. Darvesh, M.Pharm., Ph.D., for reviewing the manuscript and providing excellent feedback and comments. This work was supported in part by a Research Incentive grant from Ohio Board of Regents, State of Ohio.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Bishayee.

Additional information

Daniel J. Luther and Vahagn Ohanyan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luther, D.J., Ohanyan, V., Shamhart, P.E. et al. Chemopreventive doses of resveratrol do not produce cardiotoxicity in a rodent model of hepatocellular carcinoma. Invest New Drugs 29, 380–391 (2011). https://doi.org/10.1007/s10637-009-9332-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9332-7

Keywords

Navigation