Skip to main content

Advertisement

Log in

Effect of a Vitamin D3 derivative (B3CD) with postulated anti-cancer activity in an ovarian cancer animal model

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The objective of the present study was to test the hypothesis that Calcidiol derivative B3CD qualifies as a potential anti-cancer drug in vivo employing an ovarian cancer xenograft model in mice. In addition, the selectivity of B3CD on viability and proliferation of platinum-resistant human ovarian cancer cell lines in comparison to control cell lines was analyzed in vitro. B3CD displayed cell line-specific cytotoxicity screened against a panel of ovarian and other carcinoma cell lines, endothelial and control cells. B3CD, at sub-cytotoxic concentrations, revealed stronger effects on the proliferation of SKOV-3 ovarian cancer cells vs. primary fibroblasts as determined by BrdU incorporation analysis. Treatment with B3CD at 0.5 µM resulted in highly condensed chromatin and fragmented nuclei in SKOV-3 cells but not in primary fibroblasts. B3CD induced cell death at low drug concentrations (≤0.5 µM) in SKOV-3 ovarian cancer cells is mediated by the p38 MAPK signaling pathway: B3CD induced p38 MAPK expression and activation in SKOV-3 cells and inhibition of p38 signaling counteracted B3CD induced cell death in vitro. An ovarian cancer cell animal model (human SKOV-3 cell derived xenografts in nude mice) revealed that tumor growth in few B3CD treated mice accelerated while the majority of B3CD treated mice displayed delayed tumor growth or full tumor regression. B3CD possesses anti-ovarian cancer properties in vitro and in vivo. We propose the further development of non-calcemic bromoacetoxy derivatives of vitamin D3 as potential anti-cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heintz APM, Odicino F, Maisonneuve P, Beller U, Benedet JL, Creasman WT, Ngan HYS, Pecorelli S (2008) International federation of gynecology and obstetrics 25th annual report. Carcinoma of the ovary. Int J Gyn Obst 83:135–137

    Article  Google Scholar 

  2. Cancer Facts and Figures (2008) http://www.cancer.org/downloads/STT/2008CAFFfinalsecured.pdf

  3. Piccart MJ, Bertelsen K, James K, Cassidy J, Mangioni C, Simonsen E, Stuart G, Kaye S, Vergote I, Blom R, Grimshaw R, Atkinson RJ, Swenerton KD, Trope C, Nardi M, Kaern J, Tumolo S, Timmers P, Roy JA, Lhoas F, Lindvall B, Bacon M, Birt A, Andersen JE, Zee B, Paul J, Baron B, Pecorelli S (2000) Randomized intergroup trial of cisplatin-paclitaxel versus cisplatin-cyclophosphamide in women with advanced epithelial ovarian cancer: three-year results. J Natl Cancer Inst 92:699–708

    Article  CAS  PubMed  Google Scholar 

  4. McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, Clarke-Pearson DL, Davidson M (1996) Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med 334:1–6

    Article  CAS  PubMed  Google Scholar 

  5. McGuire WP, Ozols RF (1998) Chemotherapy of advanced ovarian cancer. Semin Oncol 25:340–348

    CAS  PubMed  Google Scholar 

  6. Lamberth E, Gregory WM, Nelstrop AE, Rustin GJ (2004) Long-term survival in 463 women treated with platinum analogs for advanced epithelial carcinoma of the ovary: life expectancy compared to women of an age-matched normal population. Int J Gynecol Cancer 14:772–778

    Article  Google Scholar 

  7. Ott I, Gust R (2007) Non platinum metal complexes as anti-cancer drugs. Arch Pharm 340:117–126

    Article  CAS  Google Scholar 

  8. Leitao MM Jr, Hummer A, Dizon DS, Aghajanian C, Hensley M, Sabbatini P, Venkatraman E, Spriggs DR (2003) Platinum retreatment of platinum-resistant ovarian cancer after nonplatinum therapy. Gynecol Oncol 91:123–129

    Article  CAS  PubMed  Google Scholar 

  9. Kumar R (2002) 1Alpha, 25-dihydroxyvitamin D(3)—not just a calciotropic hormone. Nephron 91:576–581

    Article  CAS  PubMed  Google Scholar 

  10. DeLuca HF, Zierold C (1998) Mechanisms and functions of vitamin D. Nutr Rev 56(4–10):54–75

    Google Scholar 

  11. Dusso AS, Brown AJ (1998) Mechanism of vitamin D action and its regulation. Am J Kidney Dis 32:13–24

    Article  Google Scholar 

  12. Olick MF (2002) Vitamin D: the underappreciated D-lightful hormone that is important for skeletal and cellular health. Curr Opin Endocrinol Diab 9:87–98

    Article  Google Scholar 

  13. Reichrath J (1997) Will analogs of 1, 25-dihydroxyvitamin D(3) (Calcitriol/Vitamin D3/vitamin D3) open a new era in cancer therapy? Onkologie 24:128–133

    Article  Google Scholar 

  14. Schmidt-Gayk H, Bouillon R, Roth HJ (1997) Measurement of vitamin D and its metabolites (calcidiol and Calcitriol/Vitamin D3/vitamin D3) and their clinical significance. Scand J Clin Lab Invest Suppl 227:35–45

    CAS  PubMed  Google Scholar 

  15. Brown AJ (2000) Mechanisms for the selective actions of vitamin D analogues. Curr Pharm Des 6:701–716

    Article  CAS  PubMed  Google Scholar 

  16. Addad JG, Abrams J, Walgate J (1981) Affinity chromatography with 25-hydroxycholecalciferol ester in the isolation of the binding protein for vitamin D and its metabolites from human serum. Metab Bone Dis Relat Res 3:43–46

    Article  Google Scholar 

  17. Swamy N, Persons KS, Chen TC, Ray R (2003) 1α, 25-Dihydroxyvitamin D3-3beta-(2)-bromoacetate, an affinity labeling derivative of 1 α, 25-dihydroxy-vitamin D3 displays strong antiproliferative and cytotoxic behavior in prostate cancer cells. J Cell Biochem 89:909–916

    Article  CAS  PubMed  Google Scholar 

  18. Cottens S, Sedrani R (2002) O-alkylated rapamycin derivatives and their use. United States Patent 6440990

  19. Driedger PE, Quick J. Protein kinase C modulators (1999) United States Patent 5886017

  20. Lambert JR, Young CD, Persons KS, Ray R (2007) Mechanistic and pharmacodynamic studies of a 25-hydroxyvitamin D(3) derivative in prostate cancer cells. Biochem Biophys Res Commun 361:189–195

    Article  CAS  PubMed  Google Scholar 

  21. Swamy N, Chen TC, Peleg S, Dhawan P, Christakos S, Stewart LV, Weigel NL, Mehta RG, Holick MF, Ray R (2004) Inhibition of proliferation and induction of apoptosis by 25-hydroxyvitamin D3-3beta-(2)-Bromoacetate, a nontoxic and vitamin D receptor-alkylating analog of 25-hydroxyvitamin D3 in prostate cancer cells. Clin Cancer Res 10:8018–8027

    Article  CAS  PubMed  Google Scholar 

  22. Lange TS, Singh RK, Kim KK, Zou Y, Kalkunte SS, Sholler GS, Swamy N, Brard L (2007) Anti-proliferative and pro-apoptotic properties of 3-Bromoacetoxy Calcidiol (B3CD) in high-risk neuroblastoma. Chem Biol Drug Design 70:302–310

    Article  CAS  Google Scholar 

  23. Swamy N, Ray R (1996) Affinity labeling of rat serum vitamin D binding protein. Arch Biochem Biophys 333:139–144

    Article  CAS  PubMed  Google Scholar 

  24. Warren JC, Sweet F (1975) Synthesis and use of affinity labeling steroids for analysis of macromolecular steroid-binding sites. Methods Enzymol 36:374–410

    Article  CAS  PubMed  Google Scholar 

  25. Malich G, Markovic B, Winder C (1997) The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicol 124:179–192

    Article  CAS  Google Scholar 

  26. Lange TS, Kim KK, Singh RK, Strongin RM, McCourt CK, Brard L (2008) Iron(III)-salophene: an metallo-organic compound with selective cytotoxic and anti-proliferative properties in platinum-resistant ovarian cancer cells. PLOS One 3(e230):1–10

    Google Scholar 

  27. Carlberg C (2003) Molecular basis of the selective activity of vitamin D analogues. J Cell Biochem 88:274–281

    Article  CAS  PubMed  Google Scholar 

  28. Gruber BM, Anuszewska EL (2003) Studies on the influence of vitamin D3 metabolites on apoptosis induction in human neoplastic cells. Acta Pol Pharm 60:363–366

    CAS  PubMed  Google Scholar 

  29. Peleg S, Ismail A, Uskokovic MR, Avnur Z (2003) Evidence for tissue- and cell-type selective activation of the vitamin D receptor by Ro-26-9228, a noncalcemic analog of vitamin D3. J Cell Biochem 88:267–273

    Article  CAS  PubMed  Google Scholar 

  30. Van den Bemd GJ, Pols HA, Van Leeuwen JP (2000) Anti-tumor effects of 1, 25-dihydroxyvitamin D3 and vitamin D analogs. Curr Pharm Des 6:717–732

    Article  PubMed  Google Scholar 

  31. Martinesi M, Bruni S, Stio M, Treves C (2006) 1, 25-Dihydroxyvitamin D3 inhibits tumor necrosis factor-alpha-induced adhesion molecule expression in endothelial cells. Cell Biol Int 30:365–375

    Article  CAS  PubMed  Google Scholar 

  32. Zehnder D, Bland R, Chana RS, Wheeler DC, Howie AJ, Williams MC, Stewart PM, Hewison M (2002) Synthesis of 1, 25-dihydroxyvitamin D(3) by human endothelial cells is regulated by inflammatory cytokines: a novel autocrine determinant of vascular cell adhesion. J Am Soc Nephrol 13:621–629

    CAS  PubMed  Google Scholar 

  33. Chung I, Yu WD, Karpf AR, Flynn G, Bernardi RJ, Modzelewski RA, Johnson CS, Trump DL (2007) Anti-proliferative effects of calcitriol on endothelial cells derived from two different microenvironments. J Steroid Biochem Mol Biol 103:768–770

    Article  CAS  PubMed  Google Scholar 

  34. Flynn G, Chung I, Yu WD, Romano M, Modzelewski RA, Johnson CS, Trump DL (2006) Calcitriol (1, 25-dihydroxycholecalciferol) selectively inhibits proliferation of freshly isolated tumor-derived endothelial cells and induces apoptosis. Oncology 70:447–457

    Article  CAS  PubMed  Google Scholar 

  35. Singh RK, Lange TS, Shaw S, Kim KK, Brard L (2008) A novel Indole Ethyl Isothiocyanate (7Me-IEITC) with anti-proliferative and pro-apoptotic effects on platinum-resistant ovarian cancer cells. Gyn Onc 109:240–249

    Article  CAS  Google Scholar 

  36. Pearson G, Robinson F, Beers GT, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  CAS  PubMed  Google Scholar 

  37. Birkenkamp KU, Dokter WH, Esselink MT, Jonk LJ, Kruijer W, Vellenga E (1999) A dual function for p38 MAP kinase in hematopoietic cells: involvement in apoptosis and cell activation. Leukemia 13:1037–1045

    Article  CAS  PubMed  Google Scholar 

  38. Ahmed-Choudhury J, Williams KT, Young LS, Adams DH, Afford SC (2006) SCCD40 mediated human cholangiocyte apoptosis requires JAK2 dependent activation of STAT3 in addition to activation of JNK1/2 and ERK1/2. Cell Signal 18:456–468

    Article  CAS  PubMed  Google Scholar 

  39. Wang TH, Chan YH, Chen CW, Kung WH, Lee YS, Wang ST, Chang TC, Wang HS (2006) Paclitaxel (Taxol) upregulates expression of functional interleukin-6 in human ovarian cancer cells through multiple signaling pathways. Oncogene 25:4857–4866

    Article  CAS  PubMed  Google Scholar 

  40. Cuadrado A, Garcia-Fernandez LF, Gonzalez L, Suarez Y, Losada A, Alcaide V, Martinez T, Fernandez-Sousa JM, Sanchez-Puelles JM, Munoz A (2003) AplidinTM Induces Apoptosis in Human Cancer Cells via Glutathione Depletion and Sustained Activation of the Epidermal Growth Factor Receptor, Src, JNK, and p38 MAP-KINASE. J Biol Chem 278:241–250

    Article  CAS  PubMed  Google Scholar 

  41. Zhang CC, Shapiro DJ (2000) Activation of the p38 Mitogen activated protein kinase pathway by estrogen or by 4-hydroxytamoxifen is coupled to estrogen receptor-induces apoptosis. J Biol Chem 275:475–489

    Google Scholar 

  42. Mansouri A, Ridgway LD, Korapati AL, Zhang Q, Tian L, Wang Y, Siddik ZH, Mills GB, Claret FX (2003) Sustained activation of JNK/p38 MAP-KINASE pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells. J Biol Chem 278:19245–19256

    Article  CAS  PubMed  Google Scholar 

  43. Zhou HY, Pon YL, Wong AS (2007) Synergistic effects of epidermal growth factor and hepatocyte growth factor on human ovarian cancer cell invasion and migration: role of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Endocrinology 148:5195–5208

    Article  CAS  PubMed  Google Scholar 

  44. Chauhan SC, Vannatta K, Ebeling MC, Vinayek N, Watanabe A, Pandey KK, Bell MC, Koch MD, Aburatani H, Lio Y, Jaggi M (2009) Expression and functions of transmembrane mucin MUC13 in ovarian cancer. Cancer Res 69:765–774

    Article  CAS  PubMed  Google Scholar 

  45. Benedetti V, Perego P, Luca Beretta G, Corna E, Tinelli S, Righetti SC, Leone R, Apostoli P, Lanzi C, Zunino F (2008) Modulation of survival pathways in ovarian carcinoma cell lines resistant to platinum compounds. Mol Cancer Ther 7:679–687

    Article  CAS  PubMed  Google Scholar 

  46. Mansouri A, Ridgway LD, Korapati AL, Zhang Q, Tian L, Wang Y, Siddik ZH, Mills GB, Claret FX (2003) Sustained activation of JNK/p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells. J Biol Chem 278:19245–19256

    Article  CAS  PubMed  Google Scholar 

  47. United Sates Environmental Protection Agency (USEPA) report (2005) Bromoacetic acid—Identification, toxicity, use, water pollution potential, ecological toxicity and regulatory information. CAS number 79-08-3. http://yosemite.epa.gov

  48. Brard L, Robison K, Singh RK, Kim KK, Lange TS (2007) A novel non-hypercalcemic vitamin D derivative in the treatment of ovarian cancer. J Wom Health 16:1098–1099

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Brown University Seed Grant and a NICHD, K12 HD043447 BIRCWH Scholar Grant to Dr. Brard. The authors thank NIH COBRE Grant 1-P20RR018728 for providing instrumentation support. This article is dedicated to Laila A. Lange.

Competing Interests

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Brard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, T.S., Stuckey, A.R., Robison, K. et al. Effect of a Vitamin D3 derivative (B3CD) with postulated anti-cancer activity in an ovarian cancer animal model. Invest New Drugs 28, 543–553 (2010). https://doi.org/10.1007/s10637-009-9284-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9284-y

Keywords

Navigation