Skip to main content

Advertisement

Log in

Adaptation time, electroretinography, and pupillography in healthy subjects

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To investigate the relationship between adaptation time and the parameters of electroretinography (ERG) and pupillography in healthy subjects.

Methods

Forty-six eyes of 23 healthy women (mean age 21.7 years) were enrolled. ERG and pupillography were tested in each of the right and left 23 eyes, respectively. ERG with a skin electrode was used to determine amplitude and implicit time by the records of rod-, flash-, cone-, and flicker-responses with white light (0.01–30 cd s/m2). Infrared pupillography was used to record the pupillary light reflex to 1-s stimulation of red light (100 cd/m2). Cone- and flicker- (rod-, flash- and pupil) responses were recorded after light (dark) adaptation at 1, 5, 10, 15, and 20 min.

Results

Amplitude (µV) was significantly different between 1 min and ≥ 5 or ≥ 10 min after adaptation in b-wave of cone- or rod-response, respectively. Implicit time (ms) differed significantly between 1 min and ≥ 5 min after adaptation with b-wave of cone- and rod-response. There were significant differences between 1 min and ≥ 10 or ≥ 5 min after dark adaptation in parameter of minimum pupil diameter (mm) or constriction rate (%), respectively.

Conclusions

Cone-driven ERG can be recorded, even in 5 min of light adaptation time without any special light condition, whereas rod-driven ERG and pupillary response results can be obtained in 10 min or longer of dark adaptation time in complete darkness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hecht S (1920) The dark adaptation of the human eye. J Gen Physiol 2(5):499–517 PMID: 19871826

    Article  CAS  Google Scholar 

  2. Crawford BH (1947) Visual adaptation in relation to brief conditioning stimuli. Proc R Soc Lond B Biol Sci 134(875):283–302 PMID: 20292379

    Article  CAS  Google Scholar 

  3. Wald G, Clark AB (1937) Visual adaptation and chemistry of the rods. J Gen Physiol 21(1):93–105 PMID: 19873041

    Article  CAS  Google Scholar 

  4. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, Bach M (2015) ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130(1):1–12. https://doi.org/10.1007/s10633-01409473-7

    Article  Google Scholar 

  5. Hamilton R, Graham K (2016) Effect of shorter dark adaptation on ISCEV standard DA 0.01 and DA 3 skin ERGs in healthy adults. Doc Ophthalmol 133(1):11–19. https://doi.org/10.1007/s10633-016-9554-x

    Article  CAS  PubMed  Google Scholar 

  6. Wang B, Shen C, Zhang L, Qi L, Yao L, Chen J, Yang G, Chen T, Zhan Z (2015) Dark adaptation-induced changes in rod, cone and intrinsically photosensitive retinal ganglion cell (ipRGC) sensitivity differentially affect the pupil light response (PLR). Graefes Arch Clin Exp Ophthalmol 253(11):1997–2005. https://doi.org/10.1007/s00417-015-3137-5

    Article  PubMed  Google Scholar 

  7. Fotiou F, Fountoulakis KN, Goulas A, Alexopoulos L, Palikaras A (2000) Automated standardized pupillometry with optical method for purposes of clinical practice and research. Clin Physiol 20(5):336–347

    Article  CAS  Google Scholar 

  8. Schnitzler E-M, Baumeister M, Kohnen T (2000) Scotopic measurement of normal pupils: colvard versus video vision analyzer infrared pupillometer. J Cataract Refract Surg 26(6):859–866

    Article  CAS  Google Scholar 

  9. Bradley JC, Bentley KC, Mughal AI, Bodhireddy H, Young RS, Brown SM (2010) The effect of gender and iris color on the dark-adapted pupil diameter. J Ocul Pharmacol Ther 26(4):335–340. https://doi.org/10.1089/jop.2010.0061

    Article  CAS  PubMed  Google Scholar 

  10. Lorenz B, Strohmayr E, Zahn S, Friedburg C, Kramer M, Preising M, Stieger K (2012) Chromatic pupillometry dissects function of the three different light-sensitive retinal cell populations in RPE65 deficiency. Invest Ophthalmol Vis Sci 53(9):5641–5652. https://doi.org/10.1167/iovs.12-9974

    Article  CAS  PubMed  Google Scholar 

  11. Bremner FD (2012) Pupillometric evaluation of the dynamics of the pupillary response to a brief light stimulus in healthy subjects. Invest Ophthalmol Vis Sci 53(11):7343–7347. https://doi.org/10.1167/iovs.12-10881

    Article  PubMed  Google Scholar 

  12. Traustason S, Brondsted AE, Sander B, Lund-Andersen H (2016) Pupillary response to direct and consensual chromatic light stimuli. Acta Ophthalmol 94(1):65–69. https://doi.org/10.1111/aos.12894

    Article  PubMed  Google Scholar 

  13. Satou T, Ishikawa H, Asakawa K, Goseki T, Shimizu K (2017) Effects of ripasudil hydrochloride hydrate instillation on pupil dynamics. Curr Eye Res 42(1):54–57. https://doi.org/10.3109/02713683.2016.1148740

    Article  CAS  PubMed  Google Scholar 

  14. Yuhas PT, Shorter PD, McDaniel CE, Earley MJ, Hartwick AT (2017) Blue and red light-evoked pupil responses in photophobic subjects with TBI. Optom Vis Sci 94(1):108–117. https://doi.org/10.1097/OPX.0000000000000934

    Article  PubMed  Google Scholar 

  15. Lisowska J, Lisowski L, Kelbsch C, Maeda F, Richter P, Kohl S, Zobor D, Strasser T, Stingl K, Zrenner E, Peters T, Wilhelm H, Fischer MD, Wilhelm B, RD-CURE Consortium (2017) Development of a chromatic pupillography protocol for the first gene therapy trial in patients with CNGA3-linked achromatopsia. Invest Ophthalmol Vis Sci 58(2):1274–1282. https://doi.org/10.1167/iovs.16-20505

    Article  CAS  PubMed  Google Scholar 

  16. Lawlor M, Quartilho A, Bunce C, Nathwani N, Dowse E, Kamal D, Gazzard G (2017) Patients with normal tension glaucoma have relative sparing of the relative afferent pupillary defect compared to those with open angle glaucoma and elevated intraocular pressure. Invest Ophthalmol Vis Sci 58(12):5237–5241. https://doi.org/10.1167/iovs.17-21688

    Article  PubMed  Google Scholar 

  17. Crippa SV, Pedrosa Domellöf F, Kawasaki A (2018) Chromatic pupillometry in children. Front Neurol 9:669. https://doi.org/10.3389/fneur.2018.00669

    Article  PubMed  PubMed Central  Google Scholar 

  18. Normann RA, Werblin FS (1974) Control of retinal sensitivity. I. Light and dark adaptation of vertebrate rods and cones. J Gen Physiol 63(1):37–61 PMID: 4359063

    Article  CAS  Google Scholar 

  19. Baylor DA, Nunn BJ, Schnapf JL (1984) The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J Physiol 357:575–607

    Article  CAS  Google Scholar 

  20. Pugh E, Altman J (1988) Phototransduction. A role for calcium in adaptation. Nature 334(6177):16–17. https://doi.org/10.1038/334016a0

    Article  CAS  PubMed  Google Scholar 

  21. Aguilar M, Stiles WS (1954) Saturation of the rod mechanism of the retina at high levels of stimulation. Opt Acta 1:59–65

    Article  Google Scholar 

  22. Baker HD (1949) The course of foveal light adaptation measured by the threshold intensity increment. J Opt Soc Am 39(2):172–179

    Article  CAS  Google Scholar 

  23. Yanagisawa Y, Yoshino H, Ishikawa S, Miyata M (2017) Chemical sensitivity and sick-building syndrome. CRC Press, Boca Raton

    Book  Google Scholar 

  24. Tsujisawa I, Mukuno K, Ishikawa S (1989) The pupillary change in the course of brain death. J Auton Nerv Syst 26:63–70 (in Japanese)

    Google Scholar 

  25. Lowenstein O (1955) Pupillary reflex shapes and topical clinical diagnosis. Neurology 5(9):631–644 PMID: 13253831

    Article  CAS  Google Scholar 

  26. Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM (2007) Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vis Res 47(7):946–954. https://doi.org/10.1016/j.visres.2006.12.015

    Article  CAS  PubMed  Google Scholar 

  27. Kardon R, Anderson SC, Damarjian TG, Grace EM, Stone E, Kawasaki A (2009) Chromatic pupil responses: preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex. Ophthalmology 116(8):1564–1573. https://doi.org/10.1016/j.ophtha.2009.02.007

    Article  PubMed  Google Scholar 

  28. Asakawa K, Ishikawa H, Uga S, Mashimo K, Shimizu K, Kondo M, Terasaki H (2015) Functional and morphological study of retinal photoreceptor cell degeneration in transgenic rabbits with a Pro347Leu rhodopsin mutation. Jpn J Ophthalmol 59(5):353–363. https://doi.org/10.1007/s10384-015-0400-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Yuuki Nakayama, Yousuke Horiuchi of Uni-hite corporation, for technical assistance with data collection; Robert E. Brandt, Founder, CEO, and CME, of MedEd Japan, for editing and formatting the manuscript. This study was supported by a grant from Kitasato University School of Allied Health Sciences Grant in-Aid for Research Project, Grant Number 2018-1041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Asakawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Statement of human rights

All research procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all subjects in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asakawa, K., Ito, A., Kobayashi, H. et al. Adaptation time, electroretinography, and pupillography in healthy subjects. Doc Ophthalmol 139, 33–44 (2019). https://doi.org/10.1007/s10633-019-09693-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-019-09693-8

Keywords

Navigation