Skip to main content
Log in

P300-based acuity estimation in imitated amblyopia

  • Technical Note
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

A frequent approach to estimating visual acuity objectively is the recording of visual evoked potentials (VEPs) to patterns of different coarseness. This, however, overestimates acuity in patients with fragmented and distorted vision such as in amblyopia. This is likely due to VEP-based techniques using checkerboard or grating stimuli. We hypothesized that no overestimation would occur when the event-related potential P300 in response to optotype stimuli is used for acuity estimation.

Methods

In 29 visually normal participants, we recorded P300 responses to Landolt C optotypes of different sizes. Vision was artificially degraded by placing a patterned polymethyl methacrylate pane in front of the monitor, which resulted in fragmentation and distortion of the stimulus. As control, a frosted pane was used. Both panes were adjusted to yield the same reduction of acuity in a standard subjective acuity test. A difference of less than 0.1 log MAR was defined as criterion to judge the outcomes of the objective tests as equivalent for both types of artificial visual impairment.

Results

The average difference of P300-based objective acuity estimates between types of visual degradation was significantly smaller than 0.1 log MAR, indicating that the performance of the objective acuity test was equivalent for both types of visual degradation.

Conclusion

Our data suggest that P300-based objective acuity testing with optotype stimuli is more akin to standard psychophysical acuity testing and thus a suitable approach in cases of visual impairment where VEP-based methods fail to yield reliable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Hess RF, Thompson B, Baker DH (2014) Binocular vision in amblyopia: structure, suppression and plasticity. Ophthalmic Physiol Opt 34:146–162. https://doi.org/10.1111/opo.12123

    Article  PubMed  Google Scholar 

  2. Hess RF, Campbell FW, Greenhalgh T (1978) On the nature of the neural abnormality in human amblyopia; neural aberrations and neural sensitivity loss. Pflugers Arch 377:201–207. https://doi.org/10.1007/BF00584273

    Article  CAS  PubMed  Google Scholar 

  3. Thibos LN, Bradley A (1993) New methods for discriminating neural and optical losses of vision. Optom Vis Sci 70:279–287

    Article  CAS  PubMed  Google Scholar 

  4. Sireteanu R, Lagreze WD, Constantinescu DH (1993) Distortions in two-dimensional visual space perception in strabismic observers. Vis Res 33:677–690. https://doi.org/10.1016/0042-6989(93)90188-3

    Article  CAS  PubMed  Google Scholar 

  5. Barrett BT, Pacey IE, Bradley A et al (2003) Nonveridical visual perception in human amblyopia. Investig Ophthalmol Vis Sci 44:1555–1567. https://doi.org/10.1167/iovs.02-0515

    Article  Google Scholar 

  6. Jefferis JM, Connor AJ, Clarke MP (2015) Amblyopia. BMJ 351:h5811. https://doi.org/10.1136/bmj.h5811

    Article  PubMed  Google Scholar 

  7. Barnes GR, Li X, Thompson B et al (2010) Decreased gray matter concentration in the lateral geniculate nuclei in human amblyopes. Investig Ophthalmol Vis Sci 51:1432–1438. https://doi.org/10.1167/iovs.09-3931

    Article  Google Scholar 

  8. Mendola JD, Conner IP, Roy A et al (2005) Voxel-based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia. Hum Brain Mapp 25:222–236. https://doi.org/10.1002/hbm.20109

    Article  PubMed  Google Scholar 

  9. Allen B, Spiegel DP, Thompson B et al (2015) Altered white matter in early visual pathways of humans with amblyopia. Vis Res 114:48–55. https://doi.org/10.1016/j.visres.2014.12.021

    Article  PubMed  Google Scholar 

  10. Wu C, Hunter DG (2006) Amblyopia: diagnostic and therapeutic options. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2005.07.060

    Google Scholar 

  11. Holmes JM, Clarke MP (2006) Amblyopia. Lancet 367:1343–1351. https://doi.org/10.1016/S0140-6736(06)68581-4

    Article  PubMed  Google Scholar 

  12. DeSantis D (2014) Amblyopia. Pediatr Clin North Am 61:505–518. https://doi.org/10.1016/j.pcl.2014.03.006

    Article  PubMed  Google Scholar 

  13. Vagge A, Nelson LB (2016) Amblyopia update. Curr Opin Ophthalmol. https://doi.org/10.1097/ICU.0000000000000293

    PubMed  Google Scholar 

  14. Maconachie GDE, Gottlob I (2016) ScienceDirect the challenges of amblyopia treatment. Biomed J 38:1–7. https://doi.org/10.1016/j.bj.2015.06.001

    Google Scholar 

  15. Towle VL, Harter MR (1977) Objective determination of human visual acuity: pattern evoked potentials. Investig Ophthalmol Vis Sci 16:1073–1076

    CAS  Google Scholar 

  16. Odom JV, Hoyt CS, Marg E (1981) Effect of natural deprivation and unilateral eye patching on visual acuity of infants and children. Evoked potential measurements. Arch Ophthalmol 99:1412–1416. https://doi.org/10.1001/archopht.1981.03930020286018

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura A, Akio T, Matsuda E, Wakami Y (2001) Pattern visual evoked potentials in malingering. J Neuroophthalmol 21:42–45. https://doi.org/10.1097/00041327-200103000-00013

    Article  CAS  PubMed  Google Scholar 

  18. Wenner Y, Heinrich SP, Beisse C et al (2014) Visual evoked potential-based acuity assessment: overestimation in amblyopia. Doc Ophthalmol 128:191–200. https://doi.org/10.1007/s10633-014-9432-3

    Article  PubMed  Google Scholar 

  19. Riemslag FCC, Spekreijse H (1990) Electrodiagnosis by luminance and pattern stimulation. In: Colon EJ, Visser SL (eds) Evoked potential manual: a practical guide to clinical applications. Springer, Dordrecht, pp 117–159. https://doi.org/10.1007/978-94-009-2059-0_4

    Chapter  Google Scholar 

  20. Heinrich SP, Bock CM, Bach M (2016) Imitating the effect of amblyopia on VEP-based acuity estimates. Doc Ophthalmol 133:183–187. https://doi.org/10.1007/s10633-016-9565-7

    Article  PubMed  Google Scholar 

  21. Heinrich SP, Marhöfer D, Bach M (2010) “Cognitive” visual acuity estimation based on the event-related potential P300 component. Clin Neurophysiol 121:1464–1472. https://doi.org/10.1016/j.clinph.2010.03.030

    Article  PubMed  Google Scholar 

  22. Towle VL, Sutcliffe E, Sokol S (1985) Diagnosing functional visual deficits with the P300 component of the visual evoked potential. ArchOphthalmol 103:47–50. https://doi.org/10.1001/archopht.1985.01050010051017

    CAS  Google Scholar 

  23. Heinrich SP, Lüth I, Bach M (2015) Event-related potentials allow for optotype-based objective acuity estimation. Investig Ophthalmol Vis Sci 56:2184–2191. https://doi.org/10.1167/iovs.14-16228

    Article  CAS  Google Scholar 

  24. Bach M (1996) The Freiburg visual acuity test-automatic measurement of visual acuity. Optom Vis Sci 73:49–53. https://doi.org/10.1097/00006324-199601000-00008

    Article  CAS  PubMed  Google Scholar 

  25. Dawson R (2011) How significant is a boxplot outlier? J Stat Educ 19:1–13

    Article  CAS  Google Scholar 

  26. Heinrich SP, Krüger K, Bach M (2010) The effect of optotype presentation duration on acuity estimates revisited. Graefe’s Arch Clin Exp Ophthalmol 248:389–394. https://doi.org/10.1007/s00417-009-1268-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven P. Heinrich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of human rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Statement on the welfare of animals

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beusterien, M.L., Heinrich, S.P. P300-based acuity estimation in imitated amblyopia. Doc Ophthalmol 136, 69–74 (2018). https://doi.org/10.1007/s10633-017-9617-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-017-9617-7

Keywords

Navigation