Skip to main content

Advertisement

Log in

Reversible dysfunction of retinal ganglion cells in non-secreting pituitary tumors

  • Case Report
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

A large cohort of patients participated in a longitudinal study of early glaucoma progression. During follow up, six eyes of three patients displayed a relatively rapid deterioration of pattern electroretinogram (PERG) signal compared to changes in visual acuity, IOP, Standard Automated Perimetry, and Retinal Nerve Fiber Layer thickness measured by OCT. This deterioration prompted further testing including magnetic resonance imaging (MRI), which revealed pituitary tumors in all three patients, two of which were abutting but not compressing the chiasm. Following tumor resection, the PERG signal gradually recovered to baseline values in all six eyes. Results indicate that pituitary tumors may cause retrograde dysfunction of retinal ganglion cells (RGC) even in the absence of visible mechanical compression of the visual pathway, and such dysfunction may be reversed by tumor reduction. The results suggest that PERG is a useful tool in the early diagnosis and management of patients with chiasmal mass lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Chanson P, Salenave S (2004) Diagnosis and treatment of pituitary adenomas. Minerva Endocrinol 29(4):241–275

    PubMed  CAS  Google Scholar 

  2. Fujimoto N et al (2002) Criteria for early detection of temporal hemianopia in asymptomatic pituitary tumor. Eye 16(6):731–738

    Article  PubMed  CAS  Google Scholar 

  3. Bergland R (1969) The arterial supply of the human optic chiasm. J Neurosurg 31(3):327–334

    PubMed  CAS  Google Scholar 

  4. McIlwaine GG et al (2005) A mechanical theory to account for bitemporal hemianopia from chiasmal compression. J Neuroophthalmol 25(1):40–43

    PubMed  Google Scholar 

  5. Porciatti V et al (1999) Losses of hemifield contrast sensitivity in patients with pituitary adenoma and normal visual acuity and visual field. Clin Neurophysiol 110(5):876–886

    Article  PubMed  CAS  Google Scholar 

  6. Gutowski NJ, Heron JR, Scase MO (1997) Early impairment of foveal magno- and parvocellular pathways in juxta chiasmal tumours. Vision Res 37(10):1401–1408

    Article  PubMed  CAS  Google Scholar 

  7. Holder GE, Bullock PR (1989) Visual evoked potentials in the assessment of patients with non-functioning chromophobe adenomas. J Neurol Neurosurg Psychiatry 52(1):31–37

    Article  PubMed  CAS  Google Scholar 

  8. Danesh-Meyer HV et al (2006) Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression. Invest Ophthalmol Vis Sci 47(11):4827–4835

    Article  PubMed  Google Scholar 

  9. Zrenner E (1990) The physiological basis of the pattern electroretinogram. In: Osborne N, Chader G (eds) Progress in Retinal Research. Pergamon Press, Oxford, pp 427–464

    Google Scholar 

  10. Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20(4):531–561

    Article  PubMed  CAS  Google Scholar 

  11. Ventura LM, Porciatti V (2006) Pattern electroretinogram in glaucoma. Curr Opin Ophthalmol 17(2):196–202

    Article  PubMed  Google Scholar 

  12. Ruther K et al (1998) Prognostic value of the pattern electroretinogram in cases of tumors affecting the optic pathway. Graefes Arch Clin Exp Ophthalmol 236(4):259–263

    Article  PubMed  CAS  Google Scholar 

  13. Parmar DN et al (2000) Visual prognostic value of the pattern electroretinogram in chiasmal compression. Br J Ophthalmol 84(9):1024–1026

    Article  PubMed  CAS  Google Scholar 

  14. Ventura L, Venzara F, Porciatti V (2007) Rates of visual field and PERG changes over 4 years in early glaucoma. Invest. Ophthalmol. Vis. Sci 48:E-Abstract 221

    Google Scholar 

  15. Porciatti V, Ventura LM (2004) Normative data for a user-friendly paradigm for pattern electroretinogram recording. Ophthalmology 111(1):161–168

    Article  PubMed  Google Scholar 

  16. Fredette MJ et al (2007) Reproducibility of pattern electroretinogram in glaucoma patients with a range of severity of disease with the new glaucoma paradigm. Ophthalmology

  17. Ventura LM et al (2005) Pattern electroretinogram abnormality and glaucoma. Ophthalmology 112(1):10–19

    Article  PubMed  Google Scholar 

  18. Morgan JE (2004) Circulation and axonal transport in the optic nerve. Eye 18(11):1089–1095

    Article  PubMed  CAS  Google Scholar 

  19. Quigley HA et al (2000) Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci 41(11):3460–3466

    PubMed  CAS  Google Scholar 

  20. Cioffi GA (2005) Ischemic model of optic nerve injury. Trans Am Ophthalmol Soc 103:592–613

    PubMed  Google Scholar 

  21. Lange M et al (1994) Endothelin expression in normal human anterior pituitaries and pituitary adenomas. J Clin Endocrinol Metab 79(6):1864–1870

    Article  PubMed  CAS  Google Scholar 

  22. Broman AT et al (2008) Estimating the rate of progressive visual field damage in those with open-angle glaucoma, from cross-sectional data. Invest Ophthalmol Vis Sci 49(1):66–76

    Article  PubMed  Google Scholar 

  23. Falsini B et al (1989) Steady-state pattern electroretinogram in insulin-dependent diabetics with no or minimal retinopathy. Doc Ophthalmol 73(2):193–200

    Article  PubMed  CAS  Google Scholar 

  24. Sartucci F et al (2003) Changes in pattern electroretinograms to equiluminant red-green and blue-yellow gratings in patients with early Parkinson’s disease. J Clin Neurophysiol 20(5):375–381

    Article  PubMed  Google Scholar 

  25. Porciatti V, Sartucci F (1996) Retinal and cortical evoked responses to chromatic contrast stimuli Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain 119(3):723–740

    Article  PubMed  Google Scholar 

  26. Ventura LM, Porciatti V (2005) Restoration of retinal ganglion cell function in early glaucoma after intraocular pressure reduction: a pilot study. Ophthalmology 112(1):20–27

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to express our appreciation to Dr. Byron Lam for his critical review of our manuscript.

Conflict of interest: VP, Lace Elettronica, Italy

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Porciatti.

Additional information

Supported by NIH-NEI RO1 EY014957, NIH center grant P30-EY014801, and by an unrestricted grant to the University of Miami from Research to Prevent Blindness.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventura, L.M., Venzara, F.X. & Porciatti, V. Reversible dysfunction of retinal ganglion cells in non-secreting pituitary tumors. Doc Ophthalmol 118, 155–162 (2009). https://doi.org/10.1007/s10633-008-9143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-008-9143-8

Keywords

Navigation