Skip to main content
Log in

Linear algebraic techniques to construct monochrome visual cryptographic schemes for general access structure and its applications to color images

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Though the monochrome (black and white) visual cryptography has a very rich literature, a very few papers have been published for the construction of general access structure. In this paper we put forward a method of construction of a strong monochrome visual cryptographic scheme (VCS) for general access structure using linear algebra. As a particular case of general access structure, \((k,n)\)-VCS for \(2 \le k \le n\) is obtained. The \((n,n)\)-VCS obtained from the scheme attains the optimal pixel expansion as well as optimal relative contrast. We provide an efficient construction of \((n-1,n)\)-VCS. We further extend our monochrome VCS to color VCS for restricted access structures. Finally, we provide some interesting examples that will lead to some future research directions in the area of VCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adhikari A., Bose M.: A new visual cryptographic scheme using Latin squares. IEICE Trans. Fundam. E87-A(5), 1998–2002 (2004).

    Google Scholar 

  2. Adhikari A., Sikdar S.: A new \((2, n)\)-color visual threshold scheme for color images. In: Indocrypt’03. Lecture Notes in Computer Science, vol. 2904, pp. 148–161. Springer, Berlin (2003).

  3. Adhikari A., Dutta T.K., Roy B.: A new black and white visual cryptographic scheme for general access structures. In: Indocrypt’04. Lecture Notes in Computer Science, vol. 3348, pp. 399–413. Springer, Berlin (2004).

  4. Adhikari A., Kumar D., Bose M., Roy B.: Applications of partially balanced and balanced incomplete block designs in developing visual cryptographic schemes. IEICE Trans. Fundam. E-90A(5), 949–951 (2007).

    Google Scholar 

  5. Ateniese G., Blundo C., De Santis A., Stinson D.R.: Visual cryptography for general access structures. Inf. Comput. 129, 86–106 (1996).

    Google Scholar 

  6. Ateniese G., Blundo C., De Santis A., Stinson D.R.: Constructions and bounds for visual cryptography. In: auf der Heide F.M., Monien B. (eds.) 23rd International Colloquim on Automata, Languages and Programming (ICALP ’96). Lecture Notes in Computer Science, vol. 1099, pp. 416–428. Springer, Berlin (1996).

  7. Bitner J.R., Ehrlich G., Reingold E.M.: Efficient generation of the binary reflected Gray code. Commun. ACM 19(9), 517–521 (1976).

    Google Scholar 

  8. Blundo C., De Santis A., Stinson D.R.: On the contrast in visual cryptography schemes. J. Cryptol. 12(4), 261–289 (1999).

    Google Scholar 

  9. Blundo C., Bonis A.D., Santis A.D.: Improved schemes for visual cryptography. Des. Codes Cryptogr. 24, 255–278 (2001).

    Google Scholar 

  10. Blundo C., D’arco P., De Santis A., Stinson D.R.: Contrast optimal threshold visual cryptography. SIAM J. Discret. Math. 16(2), 224–261 (2003).

    Google Scholar 

  11. Chang C-C., Lin C.-C., Tu H.N.: Safeguarding visual information using (t, n) verifiable secret shares. J. Comput. 22(2) (2011).

  12. Cimato S., Prisco R.D., Santis A.D.: Optimal colored threshold visual cryptography schemes. Des. Codes Cryptogr. 35, 311–335 (2005).

    Google Scholar 

  13. Cimato S., De Prisco R., De Santis A.: Colored visual cryptography without color darkening. Theor. Comput. Sci. 374(1–3), 261–276 (2007).

    Google Scholar 

  14. Droste S.: New results on visual cryptography. In: Advance in Cryptography-CRYPTO’96. Lecture Notes in Computer Science, vol. 1109, pp. 401–415, Springer, Berlin (1996).

  15. Ishihara T., Koga H., New constructions of the lattice-based visual secret sharing using mixture of colors. IEICE Trans. Fundam. E85-A(1), 158–166 (2002).

    Google Scholar 

  16. Iwamoto M.: A weak security notion for visual secret sharing schemes. IEEE Trans. Inf. Forensics Secur. 7(2), 372–382 (2012).

    Google Scholar 

  17. Koga H., Ishihara T.: A general method for construction of (t, n)-threshold visual secret sharing schemes for color images. Des. Codes Cryptogr. 61(2), 223–249 (2011).

    Google Scholar 

  18. Koga H., Yamamoto H.: Proposal of a lattice-based visual secret sharing scheme for color and gray-scale images. IEICE Trans. Fundam. E81-A(6), 1262–1269 (1998).

    Google Scholar 

  19. Koga H., Iwamoto M., Yamamoto H.: An analytic construction of the visual secret scheme for color images. IEICE Trans. Fundam. E84-A(1), 262–272 (2001).

    Google Scholar 

  20. Leung B.W., Ng F.Y., Wong D.S.: On the security of a visual cryptography scheme for color images. Pattern Recognit. 42(5), 929–940 (2009).

    Google Scholar 

  21. Naor M., Shamir A.: Visual cryptography. In: Advance in Cryptography, Eurocrypt’94. Lecture Notes in Computer Science, vol. 950, pp. 1–12. Springer, Berlin (1994).

  22. Rao A.R., Bhimasankaram P.: Linear Algebra. Tata McGraw-Hill, New Delhi (1992).

  23. Rijmen V., Preneel B.: Efficient colour visual encryption or “shared colors of benetton”. Presented at EUROCRYPT ’96 Rump Session.

  24. Shyu S.J.: Efficient visual secret sharing scheme for color images. Pattern Recognit. 39(5), 866–880 (2006).

    Google Scholar 

  25. Shyu S.J.: Image encryption by random grids. Pattern Recognit. 40(3), 1014–1031 (2007).

    Google Scholar 

  26. Shyu S.J.: Image encryption by multiple random grids. Pattern Recognit. 42(7), 1582–1596 (2009).

    Google Scholar 

  27. Verheul E.R., Tilborg V.H.C.A.: Constructions and properties of \(k\) out of \(n\) visual secret sharing schemes. Des. Codes Cryptogr. 11, 179–196 (1997).

  28. Wang D.S., Yi F., Li X.: On general construction for extended visual cryptography schemes. Pattern Recognit. 42(11), 3071–3082 (2009).

    Google Scholar 

  29. Wang D., Yi F., Li X.: Probabilistic visual secret sharing schemes for grey-scale images and color images. Inf. Sci. 181(11), 2189–2208 (2011).

    Google Scholar 

  30. Yang C., Laih C.: New colored visual secret sharing schemes. Des. Codes Cryptogr. 20, 325–335 (2000).

    Google Scholar 

  31. Yang C.-N., Chen T.-S.: Colored visual cryptography scheme based on additive color mixing. Pattern Recognit. 41(10), 3114–3129 (2008).

    Google Scholar 

  32. Yang C.-N., Shih H.-W., Wu C.-C., Harn L.: K out of n region incrementing scheme in visual cryptography. IEEE Trans. Circuits Syst. Video Technol. 22(5), 799–810 (2012).

    Google Scholar 

Download references

Acknowledgments

Firstly, we would like to thank the anonymous reviewers for their important and helpful comments. We are also grateful to Professor B K Roy and Professor T K Dutta of Indian Statistical Institute, Kolkata for their important discussions which helped us to a great extent in writing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avishek Adhikari.

Additional information

Communicated by C. Blundo.

Appendices

Appendix 1

In this section we are going to compare our scheme for \((n-1,n)\) threshold case with the schemes proposed in [14] and [10] in terms of pixel expansion and relative contrasts. Let \((m_D, \alpha _D\)), \((m_B, \alpha _B\)) and \((m, \alpha \)) denote respectively the (pixel expansion, relative contrast) pairs of the schemes proposed in [14], Table 1], [10, Lemma 4.4] and this paper respectively. The Table 1 provides a comparison of these parameters.

Table 1 Comparison of pixel expansions and relative contrasts of different VCS

1.1 \((5,6)\)-VCS

The two matrices represent basis matrices for the (5,6)-VCS obtained using Theorem 2.4.

$$\begin{aligned} S^0= \left[ \begin{array}{lll} \leftarrow \text{ Col } \text{1 } \text{ to } \text{16 } \rightarrow &{} \leftarrow \text{ Col } \text{17 } \text{ to } \text{32 } \rightarrow &{} \leftarrow \text{ Col } \text{33 } \text{ to } \text{48 } \rightarrow \\ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 &{} 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 \\ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 &{} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 &{} 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 \\ 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 &{} 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 &{} 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 \\ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 &{} 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 &{} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 \\ 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 &{} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 &{} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 \\ 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 &{} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 &{} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 \\ \end{array} \right] . \end{aligned}$$
$$\begin{aligned} S^1= \left[ \begin{array}{lll} \leftarrow \text{ Col } \text{1 } \text{ to } \text{16 } \rightarrow &{} \leftarrow \text{ Col } \text{17 } \text{ to } \text{32 } \rightarrow &{} \leftarrow \text{ Col } \text{33 } \text{ to } \text{48 } \rightarrow \\ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 &{} 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 \\ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 &{} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 &{} 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 \\ 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 &{} 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 &{} 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 \\ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 &{} 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 &{} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 \\ 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 &{} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 &{} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 \\ 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 &{} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 &{} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 \end{array} \right] . \end{aligned}$$

Both \(S^0\) and \(S^1\) contain some common columns. To obtain better pixel expansion, we delete the common columns. In Table 2, we point out the column numbers to locate the common columns. For example, the column 2 in \(S^0\) is same as column 40 in \(S^1\) and so on.

Table 2 List of 18 deleted common columns from \(S^{0} \) and \(S^{1}\) for (5, 6)-VCS

1.2 \((6,7)\)-VCS

The following two matrices, \(S^0=S^0_1 || S^0_2\) and \(S^1=S^1_1 || S^1_2\) represent basis matrices for the (6,7)-VCS obtained using Theorem 2.4.

$$\begin{aligned} S^0_1= \left[ \begin{array}{llll} \leftarrow \text{ Col } \text{1 } \text{ to } \text{16 } \rightarrow &{} \leftarrow \text{ Col } \text{17 } \text{ to } \text{32 } \rightarrow &{} \leftarrow \text{ Col } \text{33 } \text{ to } \text{48 } \rightarrow &{} \leftarrow \text{ Col } \text{49 } \text{ to } \text{64 } \rightarrow \\ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 &{} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 &{} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \\ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 \\ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 &{} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 &{} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 &{} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 \\ 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 &{} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 &{} 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 &{} 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 \\ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 &{} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 &{} 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 &{} 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 \\ 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 &{} 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 &{} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 &{} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 \\ 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 &{} 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 &{} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 &{} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 \\ \end{array} \right] \!. \end{aligned}$$
$$\begin{aligned} S^0_2= \left[ \begin{array}{llll} \leftarrow \text{ Col } \text{65 } \text{ to } \text{80 } \rightarrow &{} \leftarrow \text{ Col } \text{81 } \text{ to } \text{96 } \rightarrow &{} \leftarrow \text{ Col } \text{97 } \text{ to } \text{112 } \rightarrow &{} \leftarrow \text{ Col } \text{113 } \text{ to } \text{128 } \rightarrow \\ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 &{} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 &{} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \\ 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 &{} 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 &{} 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 &{} 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 \\ 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 &{} 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 &{} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 &{} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \\ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 \\ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 &{} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 &{} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 &{} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 \\ 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 &{} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 &{} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 &{} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1\\ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 &{} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 &{} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 &{} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1\\ \end{array} \right] . \end{aligned}$$
$$\begin{aligned} S^1_1= \left[ \begin{array}{llll} \leftarrow \text{ Col } \text{1 } \text{ to } \text{16 } \rightarrow &{} \leftarrow \text{ Col } \text{17 } \text{ to } \text{32 } \rightarrow &{} \leftarrow \text{ Col } \text{33 } \text{ to } \text{48 } \rightarrow &{} \leftarrow \text{ Col } \text{49 } \text{ to } \text{64 } \rightarrow \\ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 &{} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 &{} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \\ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 \\ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 &{} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 &{} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 &{} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 \\ 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 &{} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 &{} 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 &{} 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 \\ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 &{} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 &{} 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 &{} 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 \\ 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 &{} 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 &{} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 &{} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 \\ 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 &{} 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 &{} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 &{} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1\\ \end{array} \right] . \end{aligned}$$
$$\begin{aligned} S^1_2= \left[ \begin{array}{llll} \leftarrow \text{ Col } \text{65 } \text{ to } \text{80 } \rightarrow &{} \leftarrow \text{ Col } \text{81 } \text{ to } \text{96 } \rightarrow &{} \leftarrow \text{ Col } \text{97 } \text{ to } \text{112 } \rightarrow &{} \leftarrow \text{ Col } \text{113 } \text{ to } \text{128 } \rightarrow \\ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 &{} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 &{} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \\ 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 &{} 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 &{} 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 &{} 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 \\ 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 &{} 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 &{} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 &{} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \\ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 &{} 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 \\ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 &{} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 &{} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 &{} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 \\ 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 &{} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 &{} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 &{} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 \\ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 &{} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 &{} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 &{} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1\\ \end{array} \right] . \end{aligned}$$

In Table 3, we point out the column numbers to locate the common columns.

Table 3 List of 58 deleted common columns from \(S^0\) and \(S^1\) for (6, 7)-VCS
Table 4 Comparison of pixel expansions of different access structures having at most four participants as given in Table 1 of [5]

Appendix 2

Example 7.1

Let us consider the access structure with \(\Gamma _0=\{ \{1,2 \}, \{1,3 \}, \{1,4\},\{2,3,4\}\}\) on the set \(\mathcal P =\{1,2,3,4 \}\) of four participants. We construct the basis matrices by using Theorem 2.4 and illustrate the scheme through Figs. 1, 2, 3, 4, 5, 6, 7, and 8.

Fig. 1
figure 1

The secret image

Fig. 2
figure 2

Share 1

Fig. 3
figure 3

Share 2

Fig. 4
figure 4

Share 3

Fig. 5
figure 5

Share 4

Fig. 6
figure 6

Superimposed image share 1 + share 2

Fig. 7
figure 7

Share 2 + share 3 + share 4 Superimposed image

Fig. 8
figure 8

Share 2 + share 3 No information

Appendix 3

Example 8.1

Let us consider the access structure with \(\Gamma _0=\{ \{1,2 \}, \{1,3 \}\}\) on the set \(\mathcal P =\{1,2,3 \}\) of three participants with color set \(\mathcal C =\{ C,Y,G\}\). We construct the basis matrices by using Theorems 2.4 and 4.2 and illustrate the scheme through Figs. 9, 10, 11, 12, 13, 14, and 15.

Fig. 9
figure 9

The secret image

Fig. 10
figure 10

Share 1

Fig. 11
figure 11

Share 2

Fig. 12
figure 12

Share 3

Fig. 13
figure 13

Superimposed image share 1 + share 2

Fig. 14
figure 14

Superimposed image share 1 + share 3

Fig. 15
figure 15

Superimposed image share 2 + share 3

Table 5 Comparison of contrast ratios for different access structures having at most four participants as given in Table 1 of [5]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adhikari, A. Linear algebraic techniques to construct monochrome visual cryptographic schemes for general access structure and its applications to color images. Des. Codes Cryptogr. 73, 865–895 (2014). https://doi.org/10.1007/s10623-013-9832-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-013-9832-5

Keywords

Mathematics Subject Classification

Navigation