Skip to main content
Log in

Affine cartesian codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We compute the basic parameters (dimension, length, minimum distance) of affine evaluation codes defined on a cartesian product of finite sets. Given a sequence of positive integers, we construct an evaluation code, over a degenerate torus, with prescribed parameters of a certain type. As an application of our results, we recover the formulas for the minimum distance of various families of evaluation codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams W.W., Loustaunau P.: An Introduction to Gröbner Bases. Graduate Studies in Mathematics, vol. 3. American Mathematical Society, Providence (1994).

  2. Alon N.: Combinatorial Nullstellensatz, Recent trends in combinatorics (Mat´raháza, 1995). Comb. Probab. Comput. 8(1–2), 7–29 (1999)

    Article  MATH  Google Scholar 

  3. Cox D., Little J., O’Shea D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185. Springer, New York (1998)

    Book  Google Scholar 

  4. Delsarte P., Goethals J.M., MacWilliams F.J.: On generalized Reed–Muller codes and their relatives. Inf. Control 16, 403–442 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  5. Duursma I.M., Renterí a C., Tapia-Recillas H.: Reed–Muller codes on complete intersections. Appl. Algebra Eng. Commun. Comput. 11(6), 455–462 (2001)

    Article  MATH  Google Scholar 

  6. Eisenbud D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol 150. Springer, New York (1995)

    Google Scholar 

  7. Geramita A.V., Kreuzer M., Robbiano L.: Cayley–Bacharach schemes and their canonical modules. Trans. Am. Math. Soc. 339(1), 163–189 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gold L., Little J., Schenck H.: Cayley–Bacharach and evaluation codes on complete intersections. J. Pure Appl. Algebra 196(1), 91–99 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. González-Sarabia M., Renterí a C., Tapia-Recillas H.: Reed-Muller-type codes over the Segre variety. Finite Fields Appl. 8(4), 511–518 (2002)

    MATH  MathSciNet  Google Scholar 

  10. González-Sarabia M., Rentería C., Sánchez-Hernández A.: Evaluation codes over a particular complete intersection. Int. J. Contemp. Math. Sci. 6(29–32), 1497–1504 (2011)

    MATH  MathSciNet  Google Scholar 

  11. González-Sarabia M., Rentería C., Sánchez-Hernández A.: Minimum distance of some evaluation codes, preprint (2011).

  12. Greuel G.M., Pfister G.: A Singular Introduction to Commutative Algebra, 2nd extended edn. Springer, Berlin (2008)

    Google Scholar 

  13. Harris J.: Algebraic Geometry. A First Course. Graduate Texts in Mathematics, vol. 133. Springer, New York (1992)

    Google Scholar 

  14. Joyner D.: Toric codes over finite fields. Appl. Algebra Eng. Commun. Comput. 15(1), 63–79 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lachaud G.: The parameters of projective Reed–Muller codes. Discret. Math. 81(2), 217–221 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. López H.H., Sarmiento E., Vaz Pinto M., Villarreal R.H.: Parameterized affine codes. Stud. Sci. Math. Hung. (in press) (2012).

  17. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  18. Renterí a C., Tapia-Recillas H.: Linear codes associated to the ideal of points in P d and its canonical module. Commun. Algebra 24(3), 1083–1090 (1996)

    Article  Google Scholar 

  19. Renterí a C., Tapia-Recillas H.: Reed–Muller codes: an ideal theory approach. Commun. Algebra 25(2), 401–413 (1997)

    Article  Google Scholar 

  20. Renterí a C., Simis A., Villarreal R.H.: Algebraic methods for parameterized codes and invariants of vanishing ideals over finite fields. Finite Fields Appl. 17(1), 81–104 (2011)

    Article  MathSciNet  Google Scholar 

  21. Sarmiento E., Vaz Pinto M., Villarreal R.H.: The minimum distance of parameterized codes on projective tori. Appl. Algebra Eng. Commun. Comput. 22(4), 249–264 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schmidt W.M.: Equations Over Finite Fields, An Elementary Approach.Lecture Notes in Mathematics, vol.536. Springer, Berlin (1976)

    Google Scholar 

  23. Sørensen A.: Projective Reed–Muller code. IEEE Trans. Inf. Theory 37(6), 567–1576 (1991)

    Article  Google Scholar 

  24. Stanley R.: Hilbert functions of graded algebras. Adv. Math. 28, 57–83 (1978)

    Article  MATH  Google Scholar 

  25. Stichtenoth H.: Algebraic function fields and codes, Universitext. Springer Berlin (1993).

  26. Tohǎneanu S.: Lower bounds on minimal distance of evaluation codes. Appl. Algebra Eng. Commun. Comput. (2009)

    Article  Google Scholar 

  27. Tsfasman M., Vladut S., Nogin D.: Algebraic Geometric Codes Basic Notions. Mathematical Surveys and Monographs, vol. 139, American Mathematical Society, Providence (2007).

  28. van Lint J.H.: Introduction to Coding Theory, 3rd edn Graduate Texts in Mathematics, vol 86. Springer, Berlin (1999)

    Book  Google Scholar 

  29. Vardy A.: Algorithmic complexity in coding theory and the minimum distance problem. In: STOC’97, El Paso, pp. 92–109 (electronic). ACM, New York (1999).

  30. Villarreal R.H.: Monomial Algebras. Monographs and Textbooks in Pure and Applied Mathematics, vol. 238. Marcel Dekker, New York (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael H. Villarreal.

Additional information

Communicated by G. Korchmaros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, H.H., Rentería-Márquez, C. & Villarreal, R.H. Affine cartesian codes. Des. Codes Cryptogr. 71, 5–19 (2014). https://doi.org/10.1007/s10623-012-9714-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9714-2

Keywords

Mathematics Subject Classification (2010)

Navigation