Skip to main content
Log in

On the security of the Feng–Liao–Yang Boolean functions with optimal algebraic immunity against fast algebraic attacks

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In the past few years, algebraic attacks against stream ciphers with linear feedback function have been significantly improved. As a response to the new attacks, the notion of algebraic immunity of a Boolean function f was introduced, defined as the minimum degree of the annihilators of f and f + 1. An annihilator of f is a nonzero Boolean function g, such that fg = 0. There is an increasing interest in construction of Boolean functions that possess optimal algebraic immunity, combined with other characteristics, like balancedness, high nonlinearity, and high algebraic degree. In this paper, we investigate a recently proposed infinite class of balanced Boolean functions with optimal algebraic immunity, optimum algebraic degree and much better nonlinearity than all the previously introduced classes of Boolean functions with maximal algebraic immunity. More precisely, we study the resistance of the functions against one of the new algebraic attacks, namely the fast algebraic attacks (FAAs). Using the special characteristics of the family members, we introduce an efficient method for the evaluation of their behavior against these attacks. The new algorithm is based on the well studied Berlekamp–Massey algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armknecht F., Krause M.: Constructing single- and multi-output Boolean functions with maximal immunity. In: Proceedings of ICALP 2006 LNCS, vol. 4052, pp. 180–191. Springer-Verlag, Berlin (2006).

  2. Armknecht F., Carlet C., Gaborit P., Künzli S., Meier W., Ruatta O.: Efficient computation of algebraic immunity for algebraic and fast algebraic attacks. In: Vaudenay, S. (eds) Advances in Cryptology—Eurocrypt 2006, LNCS, vol 4004, pp. 147–164. Springer-Verlag, Berlin (2006)

    Google Scholar 

  3. Braeken A., Preneel B.: On the algebraic immunity of symmetric Boolean functions. In: Maitra, S., Veni Madhavan, C.E.V., Venkatesan, R. (eds) Advances in Cryptology—Indocrypt 2005, LNCS, vol. 3797, pp. 35–48. Springer-Verlag, Berlin (2005)

    Google Scholar 

  4. Canteaut A.: Open problems related to algebraic attacks on stream ciphers. In: Ytrhus, O. (eds) Proceedings of the International Workshop on Coding and Cryptography (WCC 2005), LNCS, vol. 3969, pp. 1–11. Springer-Verlag, Berlin (2006)

    Google Scholar 

  5. Carlet C., Feng K.: An infinite class of balanced functions with optimal algebraic immunity, good immunity to fast algebraic attacks and good nonlinearity. In: Pieprzyk, J. (eds) Advances in Cryptology—Asiacrypt 2008, LNCS, vol 5350, pp. 425–440. Springer-Verlag, Berlin (2008)

    Chapter  Google Scholar 

  6. Carlet C., Dalai D.K., Gupta K.C., Maitra S.: Algebraic immunity for cryptographically significant Boolean functions: analysis and construction. IEEE Trans. Inform. Theory 52, 3105–3121 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Courtois N.: Fast algebraic attacks on stream ciphers with linear feedback. In: Boneh, D. (eds) Advances in Cryptology—Crypto 2003, LNCS, vol. 2729, pp. 176–194. Springer-Verlag, Berlin (2003)

    Chapter  Google Scholar 

  8. Courtois N.: Cryptananlysis of Sfinks. In: Won, D., Kim, S. (eds) Proceedings of Information Security and Cryptology—ICISC 2005, LNCS, vol. 3935, pp. 261–269. Springer-Verlag, Berlin (2006)

    Chapter  Google Scholar 

  9. Courtois N., Meier W.: Algebraic attacks on stream ciphers with linear feedback. In: Biham, E. (eds) Advances in Cryptology—Eurocrypt 2003, LNCS, vol. 2656, pp. 345–359. Springer-Verlag, Berlin (2003)

    Google Scholar 

  10. Dalai D.K., Gupta K.C., Maitra S.: Results on algebraic immunity for cryptographically significant Boolean functions. In: Canteaut, A., Viswanathan, K. (eds) Advances in Cryptology—Indocrypt 2004, LNCS, vol. 3348, pp. 92–106. Springer-Verlag, Berlin (2004)

    Google Scholar 

  11. Dalai D.K., Gupta K.C., Maitra S.: Cryptographically significant Boolean functions: construction and analysis of algebraic immunity. In: Gilbert, H., Handschuh, H. (eds) Proceedings of Fast Software Encryption 2005, LNCS, vol. 3557, pp. 98–111. Springer-Verlag, Berlin (2005)

    Chapter  Google Scholar 

  12. Dalai D.K., Maitra S., Sarkar S.: Basic theory in construction of Boolean functions with maximum possible annihilator immunity. Des. Codes Cryptogr. 40, 41–58 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Feng K., Liao Q., Yang J.: Maximal values of generalized algebraic immunity. Des. Codes Cryptogr. 50, 243–252 (2009)

    Article  MathSciNet  Google Scholar 

  14. Games R.A., Chan A.H.: A fast algorithm for determining the complexity of a binary sequence with period 2n. IEEE Trans. Inform. Theory IT-29, 144–146 (1983)

    Article  MathSciNet  Google Scholar 

  15. Hawkes P., Rose G.G.: Rewriting variables: the complexity of fast algebraic attacks on stream ciphers. In: Franklin, M. (eds) Advances in Cryptology—Crypto 2004, LNCS, vol. 3152, pp. 390–406. Springer-Verlag, Berlin (2004)

    Google Scholar 

  16. Imamura K., Yoshida W.: A simple derivation of the Berlekamp–Massey algorithm and some applications. IEEE Trans. Inform. Theory 33, 146–150 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li N., Qi W.-Q.: Construction and analysis of Boolean functions of 2t+1 variables with maximum algebraic immunity. In: Lai, X., Chen, K. (eds) Advances in Cryptology—Asiacrypt 2006, LNCS, vol. 4284, pp. 84–98. Springer-Verlag, Berlin (2006)

    Google Scholar 

  18. Li N., Qu L., Qi W.-F., Feng G., Li C., Xie D.: On the construction of Boolean functions with optimal algebraic immunity. IEEE Trans. Inform. Theory 54, 1330–1334 (2008)

    Article  MathSciNet  Google Scholar 

  19. Lidl R., Niederreiter H.: Finite Fields, Encyclopedia of Mathematics and Its Applications, vol. 20. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  20. Massey J.L.: Shift registers synthesis and BCH decoding. IEEE Trans. Inform. Theory IT-15, 122–127 (1969)

    Article  MathSciNet  Google Scholar 

  21. Meier W., Pasalic E., Carlet C.: Algebraic attacks and decomposition of Boolean functions. In: Cashin, C., Camenisch J., (eds) Advances in Cryptology—Eurocrypt 2004, LNCS, vol. 3027, pp. 474–491. Springer-Verlag, Berlin (2004)

    Google Scholar 

  22. Menezes A.J., Van Oorschot P.C., Vanstone S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    Book  Google Scholar 

  23. Rueppel R.A.: Analysis and Design of Stream Ciphers. Springer-Verlag, Berlin (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Rizomiliotis.

Additional information

Communicated by Shuhong Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizomiliotis, P. On the security of the Feng–Liao–Yang Boolean functions with optimal algebraic immunity against fast algebraic attacks. Des. Codes Cryptogr. 57, 283–292 (2010). https://doi.org/10.1007/s10623-010-9367-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9367-y

Keywords

Mathematics Subject Classification (2000)

Navigation