Skip to main content
Log in

Tight sets, weighted m-covers, weighted m-ovoids, and minihypers

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Minihypers are substructures of projective spaces introduced to study linear codes meeting the Griesmer bound. Recently, many results in finite geometry were obtained by applying characterization results on minihypers (De Beule et al. 16:342–349, 2008; Govaerts and Storme 4:279–286, 2004; Govaerts et al. 28:659–672, 2002). In this paper, using characterization results on certain minihypers, we present new results on tight sets in classical finite polar spaces and weighted m-covers, and on weighted m-ovoids of classical finite generalized quadrangles. The link with minihypers gives us characterization results of i-tight sets in terms of generators and Baer subgeometries contained in the Hermitian and symplectic polar spaces, and in terms of generators for the quadratic polar spaces. We also present extendability results on partial weighted m-ovoids and partial weighted m-covers, having small deficiency, to weighted m-covers and weighted m-ovoids of classical finite generalized quadrangles. As a particular application, we prove in an alternative way the extendability of 53-, 54-, and 55-caps of PG(5,3), contained in a non-singular elliptic quadric Q(5,3), to 56-caps contained in this elliptic quadric Q(5,3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bamberg J., Kelly S., Law M., Penttila T. (2007). Tight sets and m-ovoids of finite polar spaces. J. Combin. Theory Ser. A 114, 1293–1314

    Article  MATH  MathSciNet  Google Scholar 

  2. Barát J., Edel Y., Hill R., Storme L. (2004). On complete caps in the projective geometries over \({\mathbb{F}_3}\) . II: new improvements. J. Combin. Math. Combin. Comput. 49, 9–31

    MATH  MathSciNet  Google Scholar 

  3. Blokhuis A. (1994). Note on the size of a blocking set in PG(2, p). Combinatorica 14, 111–114

    Article  MATH  MathSciNet  Google Scholar 

  4. Brown M.R., De Beule J., Storme L. (2003). Maximal partial spreads of \({T_2(\mathcal{O})}\) and \({T_3(\mathcal{O})}\) . Eur. J. Combin. 24(1): 73–84

    Article  MATH  MathSciNet  Google Scholar 

  5. Bruen A.A. (1970). Baer subplanes and blocking sets. Bull. Am. Math. Soc. 76: 342–344

    Article  MATH  MathSciNet  Google Scholar 

  6. Cameron P.J., Liebler R.A. (1982). Tactical decompositions and orbits of projective groups. Linear Algebra Appl. 46, 91–102

    Article  MATH  MathSciNet  Google Scholar 

  7. Cardinali I., De Bruyn B.: Spin-embeddings, two-intersection sets and two-weight codes. Ars Combin. (to appear).

  8. De Beule J., Hallez A., Storme L. (2008). On the non-existence of Cameron-Liebler line classes in PG(3, q). J. Combin. Des. 16, 342–349

    Google Scholar 

  9. De Bruyn B. (2008). A characterization of m-ovoids and i-tight sets of polar spaces. Adv. Geom. 8, 367–375

    Article  MATH  MathSciNet  Google Scholar 

  10. Dodunekov S., Simonis J.: Optimal linear codes. Unpublished notes.

  11. Drudge K. (2000). Proper 2-covers of PG(3, q), q even. Geom Dedicata 80, 59–64

    Article  MATH  MathSciNet  Google Scholar 

  12. Ebert G.L. (1985). The completion problem for partial packings. Geom. Dedicata 18, 261–267

    Article  MATH  MathSciNet  Google Scholar 

  13. Ferret S., Storme L., Sziklai P., Weiner Zs.: A t (mod p) result on multiple (n − k)-blocking sets in PG(n,q). Innov. Incidence Geom. (to appear).

  14. GAP—Groups, Algorithms, Programming—a System for Computational Discrete Algebra: http://www-gap.mcs.st-and.ac.uk/.

  15. Govaerts P., Storme L. (2002). On a particular class of minihypers and its applications. II: Improvements for q square. J. Combin. Theory Ser. A 97, 369–393

    Article  MATH  MathSciNet  Google Scholar 

  16. Govaerts P., Storme L. (2003). On a particular class of minihypers and its applications I: The result for general q. Des. Codes Cryptogr. 28, 51–63

    Article  MATH  MathSciNet  Google Scholar 

  17. Govaerts P., Storme L., Van Maldeghem H. (2002). On a particular class of minihypers and its applications. III: Applications. Eur. J. Combin. 23, 659–672

    Article  MATH  MathSciNet  Google Scholar 

  18. Griesmer J.H. (1960). A bound for error-correcting codes. IBM J. Res. Dev. 4, 532–542

    Article  MATH  MathSciNet  Google Scholar 

  19. Hamada N. (1993). A characterization of some [nkdq]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry. Discrete Math. 116, 229–268

    Article  MATH  MathSciNet  Google Scholar 

  20. Hamada N., Helleseth T.: Codes and minihypers. Proceedings of the Third European Workshop on Optimal Codes and Related Topics, OC’2001, June 10–16, 2001, Sunny Beach, Bulgaria, pp. 79–84 (2001).

  21. Hamada N., Tamari F. (1978). On a geometrical method of construction of maximal t-linearly independent sets. J. Combin. Theory Ser. A 25, 14–28

    Article  MATH  MathSciNet  Google Scholar 

  22. Hill R., Landjev I., Jones C., Storme L., Barát J.: On complete caps in the projective geometries over \({\mathbb{F}_3}\) . Proceedings of the Second Pythagorean Conference (Samos, Greece, May 30-June 5, 1999), J. Geom. 67, 127–144 (2000).

  23. Hirschfeld J.W.P.: Projective Geometries Over Finite Fields, 2nd edn. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1998).

  24. Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1991).

  25. Payne S.E., Thas J.A. (1984). Finite Generalized Quadrangles. Pitman, London

    MATH  Google Scholar 

  26. PG—Projective Geometries: http://cage.ugent.be/~jdebeule/pg.html.

  27. Polverino O. (1999). Small blocking sets and complete k-arcs in PG(2, p 3). Discrete Math. 208/209: 469–476

    Article  MathSciNet  Google Scholar 

  28. Polverino O. (2000). Small blocking sets in PG(2, p 3). Des. Codes Cryptogr. 20, 319–324

    Article  MATH  MathSciNet  Google Scholar 

  29. Polverino O., Storme L. (2002). Small minimal blocking sets in PG(2, p 3). Eur. J. Combin. 23, 83–92

    Article  MATH  MathSciNet  Google Scholar 

  30. Solomon G., Stiffler J.J. (1965). Algebraically punctured cyclic codes. Inform. Control 8, 170–179

    Article  MATH  MathSciNet  Google Scholar 

  31. Storme L. (2004). Linear codes meeting the Griesmer bound, minihypers, and geometric applications. Le Matematiche LIX: 367–392

    MathSciNet  Google Scholar 

  32. Szőnyi T., Weiner Zs. (2001). Small blocking sets in higher dimensions. J. Combin. Theory Ser. A 95, 88–101

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Storme.

Additional information

Communicated by S. Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Beule, J., Govaerts, P., Hallez, A. et al. Tight sets, weighted m-covers, weighted m-ovoids, and minihypers. Des. Codes Cryptogr. 50, 187–201 (2009). https://doi.org/10.1007/s10623-008-9223-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-008-9223-5

Keywords

Mathematics Subject Classifications (2000)

Navigation