Skip to main content
Log in

MDS codes over finite principal ideal rings

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study codes over finite principal ideal rings. To do this, we begin with codes over finite chain rings as a natural generalization of codes over Galois rings GR(p el) (including \({\mathbb{Z}_{p^e}}\)). We give sufficient conditions on the existence of MDS codes over finite chain rings and on the existence of self-dual codes over finite chain rings. We also construct MDS self-dual codes over Galois rings GF(2el) of length n = 2l for any a ≥ 1 and l ≥ 2. Torsion codes over residue fields of finite chain rings are introduced, and some of their properties are derived. Finally, we describe MDS codes and self-dual codes over finite principal ideal rings by examining codes over their component chain rings, via a generalized Chinese remainder theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blake I.F.: Codes over certain rings. Inform. Contr. 20, 396–404 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blake I.F.: Codes over integer residue rings. Inform. Contr. 29, 295–300 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bourbaki N.: Algebra, Chapters 1–3. Springer-Verlag, New-York (1989)

    Google Scholar 

  4. Bourbaki N.: Algebra, Chapters 3–7. Springer-Verlag, New-York (2003)

    Google Scholar 

  5. Bourbaki N.: Commutative Algebra, Chapters 1–7. Springer-Verlag, New-York (1989)

    MATH  Google Scholar 

  6. Constantinescu I., Heise W., Honold T.: Monomial extensions of isometries between codes over \({\mathbb{Z}_m}\) . In: Proceedings of the 5th International Workshop on Algebraic and Combinatorial Coding Theory (ACCT ’96), Unicorn Shumen, pp. 98–104 (1996).

  7. Conway J.H., Sloane N.J.A.: Self-dual codes over the integers modulo 4. J. Combin. Theory, Ser. A 62, 30–45 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dougherty S.T., Gulliver T.A., Park Y.H., Wong J.N.C.: Optimal linear codes over \({\mathbb Z_m}\) . J. Korean Math. Soc. 44, 1139–1162 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dougherty S.T., Park Y.H., Kim S.Y.: Lifted codes and their weight enumerators. Discrete Math. 305, 123–135 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dougherty S.T., Shiromoto K.: MDR codes over Z k . IEEE Trans. Inform. Theory 46, 265–269 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Greferath M., Schmidt S.E.: Finite-ring combinatorics and MacWilliams’ equivalence theorem. J. Combin. Theory, Ser. A. 92, 17–28 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gulliver T.A., Kim J.-L., Lee Y.: New MDS or near-MDS self-dual codes (Preprint) (2007).

  13. Hammons A.R. Jr., Kumar P.V., Calderbank A.R., Sloane N.J.A.: The \({\mathbb Z_4}\) linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory 40, 301–319 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Honold T., Landjev I.: Linear codes over finite chain rings. Electron. J. Combin. 7, #R11 (2000).

  15. Kunz E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkahäuser, Boston (1985)

    MATH  Google Scholar 

  16. Norton G.H., Sălăgean A.: On the Hamming distance of linear codes over a finite chain ring. IEEE Trans. Inform. Theory 46, 1060–1067 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam, The Netherlands (1997).

  18. Matsumura H.: Commutative Ring Theory. Cambridge University Press, Cambridge, UK (1989)

    MATH  Google Scholar 

  19. McDonald B.R.: Finite Rings with Identity. Marcel Dekker, Inc., New York (1974)

    MATH  Google Scholar 

  20. Nebe G., Rains E.M., Sloane N.J.A.: Self-Dual Codes and Invariant Theory. Springer, Berlin (2006)

    MATH  Google Scholar 

  21. Nechaev A.A.: The Kerdock code in a cyclic form. Diskret. Mat. 1, 123–139 (1989). English translation in Discrete Math. Appl. 1, 365–384 (1991).

  22. Park Y.H.: Modular independence and generator matrices for codes over \({\mathbb{Z}_m}\) (Preprint) (2007).

  23. Pless, V.S., Huffman, W.C. (eds): Handbook of Coding Theory. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  24. Shankar P.: On BCH codes over arbitrary integer rings. IEEE Trans. Inform. Theory 25, 480–483 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  25. Spiegel E.: Codes over Z m . Inform. Contr. 35, 48–52 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  26. Spiegel E.: Codes over Z m revisited. Inform. Contr. 37, 100–104 (1979)

    Article  MathSciNet  Google Scholar 

  27. Wan Z.X.: Lectures on Finite Fields and Galois Rings. World Scientific Publishing Co., Inc., River Edge, NJ (2003)

    MATH  Google Scholar 

  28. Wood J.: Duality for modules over finite rings and applications to coding theory. Am. J. Math. 121, 555–575 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon-Lark Kim.

Additional information

Communicated by J. D. Key.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dougherty, S.T., Kim, JL. & Kulosman, H. MDS codes over finite principal ideal rings. Des. Codes Cryptogr. 50, 77–92 (2009). https://doi.org/10.1007/s10623-008-9215-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-008-9215-5

Keywords

AMS Classification

Navigation