Skip to main content

Advertisement

Log in

Environmental Toxicants and NAFLD: A Neglected yet Significant Relationship

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The liver is an organ of vital importance in the body; it is the center of metabolic activities and acts as the primary line of defense against toxic compounds. Exposure to environmental toxicants is an unavoidable fallout from rapid industrialization across the world and is even higher in developing countries. Technological development and industrialization have led to the release of toxicants such as pollutant toxic gases, chemical discharge, industrial effluents, pesticides and solvents, into the environment. In the last few years, a growing body of evidence has shed light on the potential impact of environmental toxicants on liver health, in particular, on non-alcoholic fatty liver disease (NAFLD) incidence and progression. NAFLD is a multifactorial disease linked to metabolic derangement including diabetes and other complications. Environmental toxicants including xenobiotics and pollutants may have a direct or indirect steatogenic/fibrogenic impact on the liver and should be considered as risk factors associated with NAFLD. This review discusses the contribution of environmental toxicants toward the increasing disease burden of NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NASH:

Non-alcoholic steatohepatitis

NAFLD:

Non-alcoholic fatty liver disease

HCC:

Hepatocellular carcinoma

ALT:

Alanine transaminase

POPs:

Persistent organic pollutants

PCB:

Poly chlorinated biphenyls

PAHs:

Poly aromatic hydrocarbons

DDT:

Dichlorodiphenyltrichloroethane

ROS:

Reactive oxygen species

BPA:

Bis phenol A

CVD:

Cardiovascular disease

TG:

Triglyceride

T2D:

Type 2 diabetes

HFD:

High fat diet

VOCs:

Volatile organic compounds

HSC:

Hepatic stellate cells

BAP:

Benzo alpha pyrene

PXR:

Pregnane X receptor

AhR:

Aryl hydrocarbon receptors

PPAR:

Peroxisome proliferator-activated receptor

SREBP:

Sterol regulatory element-binding proteins

TCDD:

2,3,7,8-Tetrachlorodibenzo-p-dioxin

CAR:

Constitutive androstane receptor

HNF4α:

Hepatocyte nuclear factor 4 alpha

PFAS:

Per- and polyfluoroalkyl substances

TAFLD:

Toxicant-associated fatty liver diseases

NF-κB:

Nuclear factor-κB

TLR4:

Toll-like receptor 4

IR:

Insulin resistance

References

  1. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11–20. https://doi.org/10.1038/nrgastro.2017.109.

    Article  PubMed  Google Scholar 

  2. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65:1038–1048. https://doi.org/10.1016/j.metabol.2015.12.012.

    Article  CAS  PubMed  Google Scholar 

  3. Mendez-Sanchez N, Cruz-Ramon VC, Ramirez-Perez OL, Hwang JP, Barranco-Fragoso B, Cordova-Gallardo J. New Aspects of Lipotoxicity in Nonalcoholic Steatohepatitis. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19072034.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Raza S, Rajak S, Anjum B, Sinha RA. Molecular links between non-alcoholic fatty liver disease and hepatocellular carcinoma. Hepatoma Res. 2019;5:42. https://doi.org/10.20517/2394-5079.2019.014.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang X, Ji X, Wang Q, Li JZ. New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Protein Cell. 2018;9:164–177. https://doi.org/10.1007/s13238-017-0436-0.

    Article  CAS  PubMed  Google Scholar 

  6. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement: Executive Summary. Crit Pathw Cardiol. 2005;4:198–203. https://doi.org/10.1097/00132577-200512000-00018.

    Article  PubMed  Google Scholar 

  7. Perez-Martinez P, Mikhailidis DP, Athyros VG, Bullo M, Couture P, Covas MI et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: an international panel recommendation. Nutr Rev. 2017;75:307–326. https://doi.org/10.1093/nutrit/nux014.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Al-Eryani L, Wahlang B, Falkner KC, Guardiola JJ, Clair HB, Prough RA et al. Identification of environmental chemicals associated with the development of toxicant-associated fatty liver disease in rodents. Toxicol Pathol. 2015;43:482–497. https://doi.org/10.1177/0192623314549960.

    Article  CAS  PubMed  Google Scholar 

  9. Cave M, Appana S, Patel M, Falkner KC, McClain CJ, Brock G. Polychlorinated biphenyls, lead, and mercury are associated with liver disease in American adults: NHANES 2003–2004. Environ Health Perspect. 2010;118:1735–1742. https://doi.org/10.1289/ehp.1002720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin YC, Lian IB, Kor CT, Chang CC, Su PY, Chang WT et al. Association between soil heavy metals and fatty liver disease in men in Taiwan: a cross sectional study. BMJ Open. 2017;7:e014215. https://doi.org/10.1136/bmjopen-2016-014215.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wahlang B, Appana S, Falkner KC, McClain CJ, Brock G, Cave MC. Insecticide and metal exposures are associated with a surrogate biomarker for non-alcoholic fatty liver disease in the National Health and Nutrition Examination Survey 2003–2004. Environ Sci Pollut Res Int. 2020;27:6476–6487. https://doi.org/10.1007/s11356-019-07066-x.

    Article  CAS  PubMed  Google Scholar 

  12. Frediani JK, Naioti EA, Vos MB, Figueroa J, Marsit CJ, Welsh JA. Arsenic exposure and risk of nonalcoholic fatty liver disease (NAFLD) among U.S. adolescents and adults: an association modified by race/ethnicity, NHANES 2005–2014. Environ Health. 2018;17:6. https://doi.org/10.1186/s12940-017-0350-1.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Straub AC, Stolz DB, Ross MA, Hernandez-Zavala A, Soucy NV, Klei LR et al. Arsenic stimulates sinusoidal endothelial cell capillarization and vessel remodeling in mouse liver. Hepatology. 2007;45:205–212. https://doi.org/10.1002/hep.21444.

    Article  CAS  PubMed  Google Scholar 

  14. Ditzel EJ, Li H, Foy CE, Perrera AB, Parker P, Renquist BJ et al. Altered hepatic transport by fetal arsenite exposure in diet-induced fatty liver disease. J Biochem Mol Toxicol. 2016;30:321–330. https://doi.org/10.1002/jbt.21796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tan M, Schmidt RH, Beier JI, Watson WH, Zhong H, States JC et al. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice. Toxicol Appl Pharmacol. 2011;257:356–364. https://doi.org/10.1016/j.taap.2011.09.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qiu T, Pei P, Yao X, Jiang L, Wei S, Wang Z et al. Taurine attenuates arsenic-induced pyroptosis and nonalcoholic steatohepatitis by inhibiting the autophagic-inflammasomal pathway. Cell Death Dis. 2018;9:946. https://doi.org/10.1038/s41419-018-1004-0.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wei S, Qiu T, Wang N, Yao X, Jiang L, Jia X et al. Ferroptosis mediated by the interaction between Mfn2 and IREα promotes arsenic-induced nonalcoholic steatohepatitis. Environ Res. 2020;188:109824. https://doi.org/10.1016/j.envres.2020.109824.

    Article  CAS  PubMed  Google Scholar 

  18. Berrahal AA, Lasram M, El Elj N, Kerkeni A, Gharbi N, El-Fazaa S. Effect of age-dependent exposure to lead on hepatotoxicity and nephrotoxicity in male rats. Environ Toxicol. 2011;26:68–78. https://doi.org/10.1002/tox.20530.

    Article  CAS  PubMed  Google Scholar 

  19. Milosevic N, Maier P. Lead stimulates intercellular signalling between hepatocytes and Kupffer cells. Eur J Pharmacol. 2000;401:317–328. https://doi.org/10.1016/s0014-2999(00)00473-8.

    Article  CAS  PubMed  Google Scholar 

  20. Bernard A. Renal dysfunction induced by cadmium: biomarkers of critical effects. Biometals. 2004;17:519–523. https://doi.org/10.1023/b:biom.0000045731.75602.b9.

    Article  CAS  PubMed  Google Scholar 

  21. Habeebu SS, Liu J, Liu Y, Klaassen CD. Metallothionein-null mice are more sensitive than wild-type mice to liver injury induced by repeated exposure to cadmium. Toxicol Sci. 2000;55:223–232. https://doi.org/10.1093/toxsci/55.1.223.

    Article  CAS  PubMed  Google Scholar 

  22. Hyder O, Chung M, Cosgrove D, Herman JM, Li Z, Firoozmand A et al. Cadmium exposure and liver disease among US adults. J Gastrointest Surg. 2013;17:1265–1273. https://doi.org/10.1007/s11605-013-2210-9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Werder EJ, Beier JI, Sandler DP, Falkner KC, Gripshover T, Wahlang B et al. Blood BTEXS and heavy metal levels are associated with liver injury and systemic inflammation in Gulf states residents. Food Chem Toxicol. 2020;139:111242. https://doi.org/10.1016/j.fct.2020.111242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He X, Gao J, Hou H, Qi Z, Chen H, Zhang XX. Inhibition of mitochondrial fatty acid oxidation contributes to development of nonalcoholic fatty liver disease induced by environmental cadmium exposure. Environ Sci Technol. 2019;53:13992–14000. https://doi.org/10.1021/acs.est.9b05131.

    Article  CAS  PubMed  Google Scholar 

  25. Rosales-Cruz P, Dominguez-Perez M, Reyes-Zarate E, Bello-Monroy O, Enriquez-Cortina C, Miranda-Labra R et al. Cadmium exposure exacerbates hyperlipidemia in cholesterol-overloaded hepatocytes via autophagy dysregulation. Toxicology. 2018;398–399:41–51. https://doi.org/10.1016/j.tox.2018.02.007.

    Article  PubMed  Google Scholar 

  26. Go YM, Orr M, Jones DP. Actin cytoskeleton redox proteome oxidation by cadmium. Am J Physiol Lung Cell Mol Physiol. 2013;305:L831–L843. https://doi.org/10.1152/ajplung.00203.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang JS, Park Y. Insecticide exposure and development of nonalcoholic fatty liver disease. J Agri Food Chem. 2018;66:10132–10138. https://doi.org/10.1021/acs.jafc.8b03177.

    Article  CAS  Google Scholar 

  28. Chargui I, Grissa I, Bensassi F, Hrira MY, Haouem S, Haouas Z et al. Oxidative stress, biochemical and histopathological alterations in the liver and kidney of female rats exposed to low doses of deltamethrin (DM): a molecular assessment. Biomed Environ Sci. 2012;25:672–683. https://doi.org/10.3967/0895-3988.2012.06.009.

    Article  CAS  PubMed  Google Scholar 

  29. Giray B, Gurbay A, Hincal F. Cypermethrin-induced oxidative stress in rat brain and liver is prevented by vitamin E or allopurinol. Toxicol Lett. 2001;118:139–146. https://doi.org/10.1016/s0378-4274(00)00277-0.

    Article  CAS  PubMed  Google Scholar 

  30. Peyre L, Zucchini-Pascal N, de Sousa G, Rahmani R. Effects of endosulfan on hepatoma cell adhesion: epithelial-mesenchymal transition and anoikis resistance. Toxicology. 2012;300:19–30. https://doi.org/10.1016/j.tox.2012.05.008.

    Article  CAS  PubMed  Google Scholar 

  31. Teimouri F, Amirkabirian N, Esmaily H, Mohammadirad A, Aliahmadi A, Abdollahi M. Alteration of hepatic cells glucose metabolism as a non-cholinergic detoxication mechanism in counteracting diazinon-induced oxidative stress. Hum Exp Toxicol. 2006;25:697–703. https://doi.org/10.1177/0960327106075064.

    Article  CAS  PubMed  Google Scholar 

  32. Tuzmen N, Candan N, Kaya E, Demiryas N. Biochemical effects of chlorpyrifos and deltamethrin on altered antioxidative defense mechanisms and lipid peroxidation in rat liver. Cell Biochem Funct. 2008;26:119–124. https://doi.org/10.1002/cbf.1411.

    Article  CAS  PubMed  Google Scholar 

  33. Wasef L, Nassar AMK, El-Sayed YS, Samak D, Noreldin A, Elshony N et al. The potential ameliorative impacts of cerium oxide nanoparticles against fipronil-induced hepatic steatosis. Sci Rep. 2021;11:1310. https://doi.org/10.1038/s41598-020-79479-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan S, Tian S, Meng Z, Teng M, Sun W, Jia M et al. Exposure to nitenpyram during pregnancy causes colonic mucosal damage and non-alcoholic steatohepatitis in mouse offspring: the role of gut microbiota. Environ Pollut (Bark Essex: 1987) 2021;271:116306. https://doi.org/10.1016/j.envpol.2020.116306.

    Article  CAS  Google Scholar 

  35. Yang D, Zhang X, Yue L, Hu H, Wei X, Guo Q et al. Thiamethoxam induces nonalcoholic fatty liver disease in mice via methionine metabolism disturb via nicotinamide N-methyltransferase overexpression. Chemosphere. 2021;273:129727. https://doi.org/10.1016/j.chemosphere.2021.129727.

    Article  CAS  PubMed  Google Scholar 

  36. Marx-Stoelting P, Ganzenberg K, Knebel C, Schmidt F, Rieke S, Hammer H et al. Hepatotoxic effects of cyproconazole and prochloraz in wild-type and hCAR/hPXR mice. Arch Toxicol. 2017;91:2895–2907. https://doi.org/10.1007/s00204-016-1925-2.

    Article  CAS  PubMed  Google Scholar 

  37. Stellavato A, Lamberti M, Pirozzi AVA, de Novellis F, Schiraldi C. Myclobutanil worsens nonalcoholic fatty liver disease: an in vitro study of toxicity and apoptosis on HepG2 cells. Toxicol Lett. 2016;262:100–104. https://doi.org/10.1016/j.toxlet.2016.09.013.

    Article  CAS  PubMed  Google Scholar 

  38. Pirozzi AV, Stellavato A, La Gatta A, Lamberti M, Schiraldi C. Mancozeb, a fungicide routinely used in agriculture, worsens nonalcoholic fatty liver disease in the human HepG2 cell model. Toxicol Lett. 2016;249:1–4. https://doi.org/10.1016/j.toxlet.2016.03.004.

    Article  CAS  PubMed  Google Scholar 

  39. Heal MR, Kumar P, Harrison RM. Particles, air quality, policy and health. Chem Soc Rev. 2012;41:6606–6630. https://doi.org/10.1039/c2cs35076a.

    Article  CAS  PubMed  Google Scholar 

  40. Furuyama A, Kanno S, Kobayashi T, Hirano S. Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes. Arch Toxicol. 2009;83:429–437. https://doi.org/10.1007/s00204-008-0371-1.

    Article  CAS  PubMed  Google Scholar 

  41. Xu X, Yavar Z, Verdin M, Ying Z, Mihai G, Kampfrath T et al. Effect of early particulate air pollution exposure on obesity in mice: role of p47phox. Arterioscler Thromb Vasc Biol. 2010;30:2518–2527. https://doi.org/10.1161/ATVBAHA.110.215350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zheng Z, Xu X, Zhang X, Wang A, Zhang C, Huttemann M et al. Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model. J Hepatol. 2013;58:148–154. https://doi.org/10.1016/j.jhep.2012.08.009.

    Article  CAS  PubMed  Google Scholar 

  43. Laing S, Wang G, Briazova T, Zhang C, Wang A, Zheng Z et al. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am J Physiol Cell Physiol. 2010;299:C736–C749. https://doi.org/10.1152/ajpcell.00529.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol. 2017;68:3–33. https://doi.org/10.1016/j.reprotox.2016.10.001.

    Article  CAS  PubMed  Google Scholar 

  45. Joshi-Barve S, Kirpich I, Cave MC, Marsano LS, McClain CJ. Alcoholic, nonalcoholic, and toxicant-associated steatohepatitis: mechanistic similarities and differences. Cell Mol Gastroenterol Hepatol. 2015;1:356–367. https://doi.org/10.1016/j.jcmgh.2015.05.006.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wahlang B, Beier JI, Clair HB, Bellis-Jones HJ, Falkner KC, McClain CJ et al. Toxicant-associated steatohepatitis. Toxicol Pathol. 2013;41:343–360. https://doi.org/10.1177/0192623312468517.

    Article  PubMed  Google Scholar 

  47. Jain RB, Ducatman A. Selective associations of recent low concentrations of perfluoroalkyl substances with liver function biomarkers: NHANES 2011 to 2014 data on us adults aged >/=20 years. J Occup Environ Med. 2019;61:293–302. https://doi.org/10.1097/JOM.0000000000001532.

    Article  CAS  PubMed  Google Scholar 

  48. Gallo V, Leonardi G, Genser B, Lopez-Espinosa MJ, Frisbee SJ, Karlsson L et al. Serum perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) concentrations and liver function biomarkers in a population with elevated PFOA exposure. Environ Health Perspect. 2012;120:655–660. https://doi.org/10.1289/ehp.1104436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Darrow LA, Groth AC, Winquist A, Shin HM, Bartell SM, Steenland K. Modeled perfluorooctanoic Acid (PFOA) exposure and liver function in a mid-ohio valley community. Environ Health Perspect. 2016;124:1227–1233. https://doi.org/10.1289/ehp.1510391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jin R, McConnell R, Catherine C, Xu S, Walker DI, Stratakis N et al. Perfluoroalkyl substances and severity of nonalcoholic fatty liver in Children: an untargeted metabolomics approach. Environ Int. 2020;134:105220. https://doi.org/10.1016/j.envint.2019.105220.

    Article  CAS  PubMed  Google Scholar 

  51. Stratakis N, VC D, Jin R, Margetaki K, Valvi D, Siskos AP et al. Prenatal exposure to perfluoroalkyl substances associated with increased susceptibility to liver injury in children. Hepatology. 2020;72:1758–1770. https://doi.org/10.1002/hep.31483.

    Article  CAS  PubMed  Google Scholar 

  52. Das KP, Wood CR, Lin MT, Starkov AA, Lau C, Wallace KB et al. Perfluoroalkyl acids-induced liver steatosis: effects on genes controlling lipid homeostasis. Toxicology. 2017;378:37–52. https://doi.org/10.1016/j.tox.2016.12.007.

    Article  CAS  PubMed  Google Scholar 

  53. Haughom B, Spydevold O. The mechanism underlying the hypolipemic effect of perfluorooctanoic acid (PFOA), perfluorooctane sulphonic acid (PFOSA) and clofibric acid. Biochim Biophys Acta. 1992;1128:65–72. https://doi.org/10.1016/0005-2760(92)90258-w.

    Article  CAS  PubMed  Google Scholar 

  54. Wan HT, Zhao YG, Wei X, Hui KY, Giesy JP, Wong CK. PFOS-induced hepatic steatosis, the mechanistic actions on beta-oxidation and lipid transport. Biochim Biophys Acta. 2012;1820:1092–1101. https://doi.org/10.1016/j.bbagen.2012.03.010.

    Article  CAS  PubMed  Google Scholar 

  55. Tan X, Xie G, Sun X, Li Q, Zhong W, Qiao P et al. High fat diet feeding exaggerates perfluorooctanoic acid-induced liver injury in mice via modulating multiple metabolic pathways. PLoS One. 2013;8:e61409. https://doi.org/10.1371/journal.pone.0061409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Beggs KM, McGreal SR, McCarthy A, Gunewardena S, Lampe JN, Lau C et al. The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction. Toxicol Appl Pharmacol. 2016;304:18–29. https://doi.org/10.1016/j.taap.2016.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abe T, Takahashi M, Kano M, Amaike Y, Ishii C, Maeda K et al. Activation of nuclear receptor CAR by an environmental pollutant perfluorooctanoic acid. Arch Toxicol. 2017;91:2365–2374. https://doi.org/10.1007/s00204-016-1888-3.

    Article  CAS  PubMed  Google Scholar 

  58. Yoon K, Kwack SJ, Kim HS, Lee BM. Estrogenic endocrine-disrupting chemicals: molecular mechanisms of actions on putative human diseases. J Toxicol Environ Health B Crit Rev. 2014;17:127–174. https://doi.org/10.1080/10937404.2014.882194.

    Article  CAS  PubMed  Google Scholar 

  59. Verstraete SG, Wojcicki JM, Perito ER, Rosenthal P. Bisphenol a increases risk for presumed non-alcoholic fatty liver disease in Hispanic adolescents in NHANES 2003–2010. Environ Health. 2018;17:12. https://doi.org/10.1186/s12940-018-0356-3.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kim D, Yoo ER, Li AA, Cholankeril G, Tighe SP, Kim W et al. Elevated urinary bisphenol A levels are associated with non-alcoholic fatty liver disease among adults in the United States. Liver Int Official journal Int Assoc Study Liver. 2019;39:1335–1342. https://doi.org/10.1111/liv.14110.

    Article  CAS  Google Scholar 

  61. Khalil N, Ebert JR, Wang L, Belcher S, Lee M, Czerwinski SA et al. Bisphenol A and cardiometabolic risk factors in obese children. The Science of the total environment. 2014;470–471:726–732. https://doi.org/10.1016/j.scitotenv.2013.09.088.

    Article  PubMed  Google Scholar 

  62. Wada K, Sakamoto H, Nishikawa K, Sakuma S, Nakajima A, Fujimoto Y et al. Life style-related diseases of the digestive system: endocrine disruptors stimulate lipid accumulation in target cells related to metabolic syndrome. J Pharmacol Sci. 2007;105:133–137. https://doi.org/10.1254/jphs.fm0070034.

    Article  CAS  PubMed  Google Scholar 

  63. Rochester JR. Bisphenol A and human health: a review of the literature. Reprod Toxicol. 2013;42:132–155. https://doi.org/10.1016/j.reprotox.2013.08.008.

    Article  CAS  PubMed  Google Scholar 

  64. Marmugi A, Ducheix S, Lasserre F, Polizzi A, Paris A, Priymenko N et al. Low doses of bisphenol A induce gene expression related to lipid synthesis and trigger triglyceride accumulation in adult mouse liver. Hepatology. 2012;55:395–407. https://doi.org/10.1002/hep.24685.

    Article  CAS  PubMed  Google Scholar 

  65. Feng D, Zhang H, Jiang X, Zou J, Li Q, Mai H et al. 2020 Bisphenol A exposure induces gut microbiota dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice. Environmental pollution (Barking, Essex: 1987) 1987;265:114880. https://doi.org/10.1016/j.envpol.2020.114880.

    Article  Google Scholar 

  66. Lv Q, Gao R, Peng C, Yi J, Liu L, Yang S et al. Bisphenol A promotes hepatic lipid deposition involving Kupffer cells M1 polarization in male mice. J Endocrinol. 2017;234:143–154. https://doi.org/10.1530/joe-17-0028.

    Article  CAS  PubMed  Google Scholar 

  67. Wang J, Yu P, Xie X, Wu L, Zhou M, Huan F et al. Bisphenol F induces nonalcoholic fatty liver disease-like changes: Involvement of lysosome disorder in lipid droplet deposition. Environ Pollut. (Barking, Essex: 1987) 1987;2021:116304. https://doi.org/10.1016/j.envpol.2020.116304.

    Article  Google Scholar 

  68. Huc L, Lemarie A, Gueraud F, Helies-Toussaint C. Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells. Toxicol In Vitro. 2012;26:709–717. https://doi.org/10.1016/j.tiv.2012.03.017.

    Article  CAS  PubMed  Google Scholar 

  69. Shimpi PC, More VR, Paranjpe M, Donepudi AC, Goodrich JM, Dolinoy DC et al. Hepatic lipid accumulation and nrf2 expression following perinatal and peripubertal exposure to bisphenol a in a mouse model of nonalcoholic liver disease. Environ Health Perspect. 2017;125:087005. https://doi.org/10.1289/ehp664.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Long Z, Fan J, Wu G, Liu X, Wu H, Liu J et al. Gestational bisphenol A exposure induces fatty liver development in male offspring mice through the inhibition of HNF1b and upregulation of PPARγ. Cell Biol Toxicol. 2021;37:65–84. https://doi.org/10.1007/s10565-020-09535-3.

    Article  CAS  PubMed  Google Scholar 

  71. Angrish MM, Dominici CY, Zacharewski TR. TCDD-elicited effects on liver, serum, and adipose lipid composition in C57BL/6 mice. Toxicol Sci. 2013;131:108–115. https://doi.org/10.1093/toxsci/kfs277.

    Article  CAS  PubMed  Google Scholar 

  72. Lefever DE, Xu J, Chen Y, Huang G, Tamas N, Guo TL. TCDD modulation of gut microbiome correlated with liver and immune toxicity in streptozotocin (STZ)-induced hyperglycemic mice. Toxicol Appl Pharmacol. 2016;304:48–58. https://doi.org/10.1016/j.taap.2016.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mesnage R, Biserni M, Balu S, Frainay C, Poupin N, Jourdan F et al. Integrated transcriptomics and metabolomics reveal signatures of lipid metabolism dysregulation in HepaRG liver cells exposed to PCB 126. Arch Toxicol. 2018;92:2533–2547. https://doi.org/10.1007/s00204-018-2235-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boucher MP, Lefebvre C, Chapados NA. The effects of PCB126 on intra-hepatic mechanisms associated with non alcoholic fatty liver disease. J Diabetes Metab Disord. 2015;14:88. https://doi.org/10.1186/s40200-015-0218-2.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gadupudi GS, Klaren WD, Olivier AK, Klingelhutz AJ, Robertson LW. PCB126-induced disruption in gluconeogenesis and fatty acid oxidation precedes fatty liver in male rats. Toxicol Sci. 2016;149:98–110. https://doi.org/10.1093/toxsci/kfv215.

    Article  CAS  PubMed  Google Scholar 

  76. Wahlang B, Song M, Beier JI, Cameron Falkner K, Al-Eryani L, Clair HB et al. Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease. Toxicol Appl Pharmacol. 2014;279:380–390. https://doi.org/10.1016/j.taap.2014.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sethi S, Morgan RK, Feng W, Lin Y, Li X, Luna C et al. Comparative analyses of the 12 Most Abundant PCB congeners detected in human maternal serum for activity at the thyroid hormone receptor and ryanodine receptor. Environ Sci Technol. 2019;53:3948–3958. https://doi.org/10.1021/acs.est.9b00535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sinha RA, Bruinstroop E, Singh BK, Yen PM. Nonalcoholic Fatty Liver Disease and Hypercholesterolemia: Roles of Thyroid Hormones, Metabolites, and Agonists. Thyroid. 2019;29:1173–1191. https://doi.org/10.1089/thy.2018.0664.

    Article  CAS  PubMed  Google Scholar 

  79. Foulds CE, Trevino LS, York B, Walker CL. Endocrine-disrupting chemicals and fatty liver disease. Nat Rev Endocrinol. 2017;13:445–457. https://doi.org/10.1038/nrendo.2017.42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tsutsumi T, Adachi R, Matsuda R, Watanabe T, Teshima R, Akiyama H. Concentrations of polycyclic aromatic hydrocarbons in smoked foods in Japan. J Food Prot. 2020;83:692–701. https://doi.org/10.4315/JFP-19-486.

    Article  CAS  PubMed  Google Scholar 

  81. Ortiz L, Nakamura B, Li X, Blumberg B, Luderer U. Reprint of “In utero exposure to benzo[a]pyrene increases adiposity and causes hepatic steatosis in female mice, and glutathione deficiency is protective.” Toxicol Lett. 2014;230:314–321. https://doi.org/10.1016/j.toxlet.2013.11.017.

    Article  CAS  PubMed  Google Scholar 

  82. Neuschafer-Rube F, Schraplau A, Schewe B, Lieske S, Krutzfeldt JM, Ringel S et al. Arylhydrocarbon receptor-dependent mIndy (Slc13a5) induction as possible contributor to benzo[a]pyrene-induced lipid accumulation in hepatocytes. Toxicology. 2015;337:1–9. https://doi.org/10.1016/j.tox.2015.08.007.

    Article  PubMed  Google Scholar 

  83. Kim KH, Jahan SA, Kabir E, Brown RJ. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int. 2013;60:71–80. https://doi.org/10.1016/j.envint.2013.07.019.

    Article  CAS  PubMed  Google Scholar 

  84. Guo J, Wang C, Guo Z, Zuo Z. Exposure to environmental level phenanthrene induces a NASH-like phenotype in new born rat. Environ Pollut (Barking, Essex: 1987) 1987;2018:261–271. https://doi.org/10.1016/j.envpol.2018.04.030.

    Article  Google Scholar 

  85. Uno S, Nebert DW, Makishima M. Cytochrome P450 1A1 (CYP1A1) protects against nonalcoholic fatty liver disease caused by Western diet containing benzo[a]pyrene in mice. Food Chem Toxicol. 2018;113:73–82. https://doi.org/10.1016/j.fct.2018.01.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Franco G. New perspectives in biomonitoring liver function by means of serum bile acids: experimental and hypothetical biochemical basis. Br J Ind Med. 1991;48:557–561. https://doi.org/10.1136/oem.48.8.557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Franco G, Fonte R, Candura F. Hepatotoxicity of organic solvents. Br J Ind Med. 1986;43:139. https://doi.org/10.1136/oem.43.2.139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Franco R, Li S, Rodriguez-Rocha H, Burns M, Panayiotidis MI. Molecular mechanisms of pesticide-induced neurotoxicity: relevance to Parkinson’s disease. Chem Biol Interact. 2010;188:289–300. https://doi.org/10.1016/j.cbi.2010.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mehta N, Murthy UK, Kaul V, Alpert S, Abruzzese G, Teitelbaum C. Outcome of retinopathy in chronic hepatitis C patients treated with peginterferon and ribavirin. Dig Dis Sci. 2010;55:452–457. https://doi.org/10.1007/s10620-009-0721-8.

    Article  CAS  PubMed  Google Scholar 

  90. Anders LC, Lang AL, Anwar-Mohamed A, Douglas AN, Bushau AM, Falkner KC et al. Vinyl chloride metabolites potentiate inflammatory liver injury caused by LPS in Mice. Toxicol Sci. 2016;151:312–323. https://doi.org/10.1093/toxsci/kfw045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Anders LC, Yeo H, Kaelin BR, Lang AL, Bushau AM, Douglas AN et al. Role of dietary fatty acids in liver injury caused by vinyl chloride metabolites in mice. Toxicol Appl Pharmacol. 2016;311:34–41. https://doi.org/10.1016/j.taap.2016.09.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lang AL, Beier JI. Interaction of volatile organic compounds and underlying liver disease: a new paradigm for risk. Biol Chem. 2018;399:1237–1248. https://doi.org/10.1515/hsz-2017-0324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lang AL, Chen L, Poff GD, Ding WX, Barnett RA, Arteel GE et al. Vinyl chloride dysregulates metabolic homeostasis and enhances diet-induced liver injury in mice. Hepatol Commun 2018;2:270–284. https://doi.org/10.1002/hep4.1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cave M, Falkner KC, Ray M, Joshi-Barve S, Brock G, Khan R et al. Toxicant-associated steatohepatitis in vinyl chloride workers. Hepatology. 2010;51:474–481. https://doi.org/10.1002/hep.23321.

    Article  CAS  PubMed  Google Scholar 

  95. Cotrim HP, De Freitas LA, Freitas C, Braga L, Sousa R, Carvalho F et al. Clinical and histopathological features of NASH in workers exposed to chemicals with or without associated metabolic conditions. Liver Int Official J Int Assoc Study Liver. 2004;24:131–135. https://doi.org/10.1111/j.1478-3231.2004.0897.x.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the ICMR (59/05/2019/ONLINE/BMS/TRM), SERB (SRG/2019/000398) awarded to Sinha RA.

Dr. Rohit A. Sinha, Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India. Email: anthony.rohit@gmail.com; rasinha@sgpgi.ac.in

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit A. Sinha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajak, S., Raza, S., Tewari, A. et al. Environmental Toxicants and NAFLD: A Neglected yet Significant Relationship. Dig Dis Sci 67, 3497–3507 (2022). https://doi.org/10.1007/s10620-021-07203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-07203-y

Keywords

Navigation