Skip to main content

Advertisement

Log in

Lidocaine Suppresses Gastric Cancer Development Through Circ_ANO5/miR-21-5p/LIFR Axis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Lidocaine has been manifested to exert anti-tumor role in gastric cancer (GC) progression. However, the action mechanism by which Lidocaine functions in GC has not been fully elucidated.

Aim

The study aimed to reveal the molecular mechanism of Lidocaine in GC progression.

Methods

Cell clonogenicity and viability were assessed by colony formation and methyl thiazolyl tetrazolium assays, respectively. Transwell assay was employed to detect cell migration and invasion. Flow cytometry was implemented to monitor cell apoptosis. Relative expression of circular RNA ANO5 (circ_ANO5), microRNA (miR)-21-5p and Leukemia inhibitory factor receptor (LIFR) was examined by quantitative reverse transcription-polymerase chain reaction. Western blot assay was performed to analyze the levels of LIFR and cell metastasis-related proteins. The target relationship between miR-21-5p and circ_ANO5 or LIFR was confirmed by dual-luciferase reporter assay. In addition, xenograft model was established to explore the role of Lidocaine in vivo.

Results

Lidocaine inhibited cell proliferation, migration and invasion, while promoted apoptosis of GC cells. Lidocaine upregulated circ_ANO5 and LIFR expression, but downregulated miR-21-5p expression in GC cells. Additionally, expression of circ_ANO5 and LIFR was decreased, while miR-21-5p expression was increased in GC cells. Circ_ANO5 depletion or miR-21-5p overexpression attenuated Lidocaine-induced anti-proliferative and anti-metastatic effects on GC cells. Circ_ANO5 could sponge miR-21-5p, and miR-21-5p targeted LIFR. Moreover, Lidocaine suppressed the tumor growth in vivo.

Conclusion

Lidocaine might GC cell malignancy by modulating circ_ANO5/miR-21-5p/LIFR axis, highlighting a novel insight for GC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.

    Article  Google Scholar 

  2. Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang XS et al. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet 2015;385:977–1010.

    Article  Google Scholar 

  3. Hess LM, Michael D, Mytelka DS, Beyrer J, Liepa AM, Nicol S. Chemotherapy treatment patterns, costs, and outcomes of patients with gastric cancer in the United States: a retrospective analysis of electronic medical record (EMR) and administrative claims data. Gastric Cancer 2016;19:607–615.

    Article  CAS  Google Scholar 

  4. Weng M, Chen W, Hou W, Li L, Ding M, Miao C. The effect of neuraxial anesthesia on cancer recurrence and survival after cancer surgery: an updated meta-analysis. Oncotarget 2016;7:15262–15273.

    Article  Google Scholar 

  5. Lee JT, Sanderson CR, Xuan W, Agar M. Lidocaine for cancer pain in adults: a systematic review and meta-analysis. J Palliat Med 2019;22:326–334.

    Article  Google Scholar 

  6. Chamaraux-Tran TN, Mathelin C, Aprahamian M, Joshi GP, Tomasetto C, Diemunsch P et al. Antitumor effects of lidocaine on human breast cancer cells: an in vitro and in vivo experimental trial. Anticancer Res 2018;38:95–105.

    CAS  PubMed  Google Scholar 

  7. Ye L, Zhang Y, Chen YJ, Liu Q. Anti-tumor effects of lidocaine on human gastric cancer cells in vitro. Bratisl Lek Listy 2019;120:212–217.

    CAS  PubMed  Google Scholar 

  8. Dong Y, He D, Peng Z, Peng W, Shi W, Wang J et al. Circular RNAs in cancer: an emerging key player. J Hematol Oncol 2017;10:2.

    Article  Google Scholar 

  9. Greene J, Baird AM, Brady L, Lim M, Gray SG, McDermott R et al. Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci 2017;4:38.

    Article  Google Scholar 

  10. Chen S, Zhao Y. Circular RNAs: characteristics, function, and role in human cancer. Histol Histopathol 2018;33:887–893.

    CAS  PubMed  Google Scholar 

  11. Shang Q, Yang Z, Jia R, Ge S. The novel roles of circRNAs in human cancer. Mol Cancer 2019;18:6.

    Article  Google Scholar 

  12. Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer 2019;18:20.

    Article  Google Scholar 

  13. Zhang L, Song X, Chen X, Wang Q, Zheng X, Wu C et al. Circular RNA CircCACTIN promotes gastric cancer progression by sponging MiR-331-3p and regulating TGFBR1 expression. Int J Biol Sci 2019;15:1091–1103.

    Article  CAS  Google Scholar 

  14. Zhong S, Wang J, Hou J, Zhang Q, Xu H, Hu J et al. Circular RNA hsa_circ_0000993 inhibits metastasis of gastric cancer cells. Epigenomics 2018;10:1301–1313.

    Article  CAS  Google Scholar 

  15. Park SK, Park YS, Ahn JY, Do EJ, Kim D, Kim JE et al. MiR 21–5p as a predictor of recurrence in young gastric cancer patients. J Gastroenterol Hepatol 2016;31:1429–1435.

    Article  CAS  Google Scholar 

  16. Pillai RS. MicroRNA function: multiple mechanisms for a tiny RNA? RNA 2005;11:1753–1761.

    Article  CAS  Google Scholar 

  17. Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH, Teruya-Feldstein J et al. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med 2012;18:1511–1517.

    Article  CAS  Google Scholar 

  18. Zhang F, Li K, Pan M, Li W, Wu J, Li M et al. miR-589 promotes gastric cancer aggressiveness by a LIFR-PI3K/AKT-c-Jun regulatory feedback loop. J Exp Clin Cancer Res 2018;37:152.

    Article  CAS  Google Scholar 

  19. Zhang H, Wang X, Hu B, Zhang F, Wei H, Li L. Circular RNA ZFR accelerates non-small cell lung cancer progression by acting as a miR-101-3p sponge to enhance CUL4B expression. Artif Cells Nanomed Biotechnol 2019;47:3410–3416.

    Article  CAS  Google Scholar 

  20. Le-Wendling L, Nin O, Capdevila X. Cancer recurrence and regional anesthesia: the theories, the data, and the future in outcomes. Pain Med 2016;17:756–775.

    PubMed  Google Scholar 

  21. Yang X, Wei X, Mu Y, Li Q, Liu J. A review of the mechanism of the central analgesic effect of lidocaine. Medicine (Baltimore) 2020;99:e19898.

    Article  Google Scholar 

  22. Zhang H, Yang L, Zhu X, Zhu M, Sun Z, Cata JP et al. Association between intraoperative intravenous lidocaine infusion and survival in patients undergoing pancreatectomy for pancreatic cancer: a retrospective study. Br J Anaesth 2020;125:141–148.

    Article  CAS  Google Scholar 

  23. D’Agostino G, Saporito A, Cecchinato V, Silvestri Y, Borgeat A, Anselmi L et al. Lidocaine inhibits cytoskeletal remodelling and human breast cancer cell migration. Br J Anaesth 2018;121:962–968.

    Article  CAS  Google Scholar 

  24. Qu X, Yang L, Shi Q, Wang X, Wang D, Wu G. Lidocaine inhibits proliferation and induces apoptosis in colorectal cancer cells by upregulating mir-520a-3p and targeting EGFR. Pathol Res Pract 2018;214:1974–1979.

    Article  CAS  Google Scholar 

  25. Sun H, Sun Y. Lidocaine inhibits proliferation and metastasis of lung cancer cell via regulation of miR-539/EGFR axis. Artif Cells Nanomed Biotechnol 2019;47:2866–2874.

    Article  CAS  Google Scholar 

  26. Xia W, Wang L, Yu D, Mu X, Zhou X. Lidocaine inhibits the progression of retinoblastoma in vitro and in vivo by modulating the miR-520a-3p/EGFR axis. Mol Med Rep 2019;20:1333–1342.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang Q, Zhang Z, Xu H, Ma C. Lidocaine alleviates cytotoxicity-resistance in lung cancer A549/DDP cells via down-regulation of miR-21. Mol Cell Biochem 2019;456:63–72.

    Article  CAS  Google Scholar 

  28. Sui H, Lou A, Li Z, Yang J. Lidocaine inhibits growth, migration and invasion of gastric carcinoma cells by up-regulation of miR-145. BMC Cancer 2019;19:233.

    Article  Google Scholar 

  29. Ghorbanmehr N, Gharbi S, Korsching E, Tavallaei M, Einollahi B, Mowla SJ. miR-21-5p, miR-141-3p, and miR-205-5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer. Prostate 2019;79:88–95.

    Article  CAS  Google Scholar 

  30. Chen C, Liu X, Chen C, Chen Q, Dong Y, Hou B. Clinical significance of let-7a-5p and miR-21-5p in patients with breast cancer. Ann Clin Lab Sci 2019;49:302–308.

    CAS  PubMed  Google Scholar 

  31. Jin XH, Lu S, Wang AF. Expression and clinical significance of miR-4516 and miR-21-5p in serum of patients with colorectal cancer. BMC Cancer 2020;20:241.

    Article  CAS  Google Scholar 

  32. Kalogirou C, Ellinger J, Kristiansen G, Hatzichristodoulou G, Kübler H, Kneitz B et al. Identification of miR-21-5p and miR-210-3p serum levels as biomarkers for patients with papillary renal cell carcinoma: a multicenter analysis. Transl Androl Urol 2020;9:1314–1322.

    Article  Google Scholar 

  33. Tao L, Wu YQ, Zhang SP. MiR-21-5p enhances the progression and paclitaxel resistance in drug-resistant breast cancer cell lines by targeting PDCD4. Neoplasma 2019;66:746–755.

    Article  CAS  Google Scholar 

  34. Zhong J, Ren X, Chen Z, Zhang H, Zhou L, Yuan J et al. miR-21-5p promotes lung adenocarcinoma progression partially through targeting SET/TAF-Iα. Life Sci 2019;231:116539.

    Article  CAS  Google Scholar 

  35. Li X, Wu X. MiR-21-5p promotes the progression of non-small-cell lung cancer by regulating the expression of SMAD7. Onco Targets Ther 2018;11:8445–8454.

    Article  CAS  Google Scholar 

  36. Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest 2008;88:1358–1366.

    Article  CAS  Google Scholar 

  37. Okamura Y, Nomoto S, Kanda M, Li Q, Nishikawa Y, Sugimoto H et al. Leukemia inhibitory factor receptor (LIFR) is detected as a novel suppressor gene of hepatocellular carcinoma using double-combination array. Cancer Lett 2010;289:170–177.

    Article  CAS  Google Scholar 

  38. Ma D, Jing X, Shen B, Liu X, Cheng X, Wang B et al. Leukemia inhibitory factor receptor negatively regulates the metastasis of pancreatic cancer cells in vitro and in vivo. Oncol Rep 2016;36:827–836.

    Article  CAS  Google Scholar 

  39. Lei C, Lv S, Wang H, Liu C, Zhai Q, Wang S et al. Leukemia inhibitory factor receptor suppresses the metastasis of clear cell renal cell carcinoma through negative regulation of the yes-associated protein. DNA Cell Biol 2018;37:659–669.

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Enjian Guan supervised the study; conducted the experiments; drafted the manuscript; collected and analyzed the data. Hongrong Liu contributed the methodology and edited the manuscript. Ning Xu was responsible for visualization, conceptualization and validation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ning Xu.

Ethics declarations

Competing interests

The authors report no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, E., Liu, H. & Xu, N. Lidocaine Suppresses Gastric Cancer Development Through Circ_ANO5/miR-21-5p/LIFR Axis. Dig Dis Sci 67, 2244–2256 (2022). https://doi.org/10.1007/s10620-021-07055-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-07055-6

Keywords

Navigation