Skip to main content
Log in

Circular RNA circZFR Promotes Hepatocellular Carcinoma Progression by Regulating miR-375/HMGA2 Axis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Mounting evidence indicates that circular RNAs (circRNAs) have vital roles in human diseases, especially in cancers.

Aims

The aim of this study was to explore the biological functions and underlying mechanism of circRNA zinc finger RNA binding (circZFR) in hepatocellular carcinoma (HCC).

Methods

The expression levels of circZFR, microRNA-375 (miR-375) and high mobility group A2 (HMGA2) were detected by qRT-PCR or western blot assay. Glycolytic metabolism was examined via the measurement of extracellular acidification rate, oxygen consumption rate, glucose uptake, lactate production, and ATP level. MTT assay and flow cytometry were used to assess cell proliferation and cell apoptosis, respectively. The interaction between miR-375 and circZFR or HMGA2 was verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. The mice xenograft model was established to investigate the role of circZFR in vivo.

Results

CircZFR and HMGA2 were upregulated while miR-375 was downregulated in HCC tissues and cells. CircZFR silence inhibited HCC progression by inhibiting cell proliferation, glycolysis and tumor growth and promoting apoptosis. MiR-375 was a direct target of circZFR and its knockdown reversed the inhibitory effect of circZFR silence on the progression of HCC cells. Moreover, HMGA2 was a downstream target of miR-375, and miR-375 suppressed proliferation and glycolysis and induced apoptosis by targeting HMGA2 in HCC cells. Besides, circZFR acted as a molecular sponge of miR-375 to regulate HMGA2 expression.

Conclusion

Knockdown of circZFR suppressed the progression of HCC by upregulating miR-375 and downregulating HMGA2, providing new insight into the pathogenesis of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  2. Jinjuvadia R, Salami A, Lenhart A, Jinjuvadia K, Liangpunsakul S, Salgia R. Hepatocellular carcinoma: a decade of hospitalizations and financial burden in the United States. Am J Med Sci. 2017;354:362–369.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol. 2009;27:1485.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333.

    Article  CAS  PubMed  Google Scholar 

  5. Haque S, Harries LW. Circular RNAs (circRNAs) in Health and Disease Genes (Basel). 2017;8.

  6. Han D, Li J, Wang H, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66:1151–1164.

    Article  CAS  PubMed  Google Scholar 

  7. Chen G, Shi Y, Liu M, Sun J. circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis. 2018;9:175.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ren S, Xin Z, Xu Y, Xu J, Wang G. Construction and analysis of circular RNA molecular regulatory networks in liver cancer. Cell Cycle. 2017;16:2204–2211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bach DH, Lee SK, Sood AK. Circular RNAs in cancer. Mol Ther Nucleic Acids. 2019;16:118–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ardekani AM, Naeini MM. The Role of MicroRNAs in human diseases avicenna. J Med Biotechnol. 2010;2:161–179.

    CAS  Google Scholar 

  11. Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6:590–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He XX, Chang Y, Meng FY, et al. MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo. Oncogene. 2012;31:3357–3369.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang S, Mo Q, Wang X. Oncological role of HMGA2 (Review). Int J Oncol. 2019;55:775–788.

    CAS  PubMed  Google Scholar 

  14. Yang X, Zhao Q, Yin H, Lei X, Gan R. MiR-33b-5p sensitizes gastric cancer cells to chemotherapy drugs via inhibiting HMGA2 expression. J Drug Target. 2017;25:653–660.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao YC, Jiao Y, Li YQ, Fu Z, Yang ZY, He M. Elevated high mobility group A2 expression in liver cancer predicts poor patient survival. Rev Esp Enferm Dig. 2020;112:27–33.

    PubMed  Google Scholar 

  16. Song R, Song H, Liang Y, et al. Reciprocal activation between ATPase inhibitory factor 1 and NF-kappaB drives hepatocellular carcinoma angiogenesis and metastasis. Hepatology. 2014;60:1659–1673.

    Article  CAS  PubMed  Google Scholar 

  17. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–388.

    Article  CAS  PubMed  Google Scholar 

  18. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–E386.

    Article  CAS  PubMed  Google Scholar 

  20. Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:11215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12:381–388.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25:981–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei H, Pan L, Tao D, Li R. Circular RNA circZFR contributes to papillary thyroid cancer cell proliferation and invasion by sponging miR-1261 and facilitating C8orf4 expression Biochem. Biophys Res Commun. 2018;503:56–61.

    Article  CAS  Google Scholar 

  24. Liu T, Liu S, Xu Y, et al. Circular RNA-ZFR inhibited cell proliferation and promoted apoptosis in gastric cancer by sponging miR-130a/miR-107 and modulating PTEN. Cancer Res Treat. 2018;50:1396–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan A, Li Q, Chen L. CircZFR promotes hepatocellular carcinoma progression through regulating miR-3619-5p/CTNNB1 axis and activating Wnt/beta-catenin pathway. Arch Biochem Biophys. 2019;661:196–202.

    Article  CAS  PubMed  Google Scholar 

  26. Yang X, Liu L, Zou H, Zheng YW, Wang KP. circZFR promotes cell proliferation and migration by regulating miR-511/AKT1 axis in hepatocellular carcinoma. Dig Liver Dis. 2019;51:1446–1455.

    Article  CAS  PubMed  Google Scholar 

  27. Wang F, Li Y, Zhou J, et al. miR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. Am J Pathol. 2011;179:2580–2588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ding L, Xu Y, Zhang W, et al. MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res. 2010;20:784–793.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Tang Q, Li M, Jiang S, Wang X. MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA. Biochem. Biophys Res Commun. 2014;444:199–204.

    Article  CAS  PubMed  Google Scholar 

  30. Nohata N, Hanazawa T, Kikkawa N, et al. Tumor suppressive microRNA-375 regulates oncogene AEG-1/MTDH in head and neck squamous cell carcinoma (HNSCC). J Hum Genet. 2011;56:595–601.

    Article  CAS  PubMed  Google Scholar 

  31. Chang Y, Yan W, He X, et al. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology. 2012;143:177–187.

    Article  CAS  PubMed  Google Scholar 

  32. Liu AM, Poon RT, Luk JM. MicroRNA-375 targets Hippo-signaling effector YAP in liver cancer and inhibits tumor properties. Biochem Biophys Res Commun. 2010;394:623–627.

    Article  CAS  PubMed  Google Scholar 

  33. Felekkis K, Touvana E, Stefanou C, Deltas C. microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia. 2010;14:236.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumar MS, Armenterosmonterroso E, East P, et al. HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature. 2014;505:212–217.

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe S, Ueda Y, Akaboshi S, Hino Y, Sekita Y, Nakao M. HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells. Am J Pathol. 2009;174:854–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang X, Liu X, Li AY, et al. Overexpression of HMGA2 promotes metastasis and impacts survival of colorectal cancers. Clin Cancer Res. 2011;17:2570–2580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Y, Chen F, Zhao M, et al. MiR-107 suppresses proliferation of hepatoma cells through targeting HMGA2 mRNA 3′UTR. Biochem Biophys Res Commun. 2016;480:455–460.

    Article  CAS  PubMed  Google Scholar 

  38. Huang W, Li J, Guo X, Zhao Y, Yuan X. miR-663a inhibits hepatocellular carcinoma cell proliferation and invasion by targeting HMGA2. Biomed Pharmacother. 2016;81:431–438.

    Article  CAS  PubMed  Google Scholar 

  39. Cui H, Song R, Wu J, Wang W, Chen X, Yin J. MicroRNA-337 regulates the PI3K/AKT and Wnt/β-catenin signaling pathways to inhibit hepatocellular carcinoma progression by targeting high-mobility group AT-hook 2. Am J Cancer Res. 2018;8:405–421.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebing Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10620_2020_6805_MOESM1_ESM.tif

Supplementary Fig. 1. Downregulation of circZFR suppressed proliferation and promoted apoptosis by upregulating miR-375 in HCC cells. (A-D) Hep3B and Huh7 cells were divided into four groups: Mock, si-con, si-circZFR-1, and si-circZFR-2. (A and B) MTT assay was utilized to assess cell proliferation. (C and D) Flow cytometry analysis was used to determine apoptosis rate. (E–H) Hep3B and Huh7 cells were divided into four groups: si-con, si-circZFR, si-circZFR + in-miR-con, and si-circZFR + in-miR-375. (E and F) Cell proliferation was assessed by MTT assay. (G and H) Flow cytometry analysis was employed to determine the apoptosis rate. *P < 0.05. (TIFF 2433 kb)

10620_2020_6805_MOESM2_ESM.tif

Supplementary Fig. 2. MiR-375 overexpression inhibited the progression of HCC cells by downregulating HMGA2. Hep3B and Huh7 cells were transfected with miR-con, miR-375, miR-375 + vector, or miR-375 + HMGA2. (A-F) Glucose Uptake Colorimetric Assay kit, Lactate Assay kit and ATP Colorimetric Assay kit were used to measure glucose uptake, lactate production and ATP level, respectively. (G and H) Cell proliferation was examined by MTT assay. (I and J) Cell apoptosis was analyzed using flow cytometry analysis. *P < 0.05. (TIFF 756 kb)

10620_2020_6805_MOESM3_ESM.tif

Supplementary Fig. 3. Silence of circZFR repressed the progression of HCC cells by downregulating HMGA2. Hep3B and Huh7 cells were transfected with si-con, si-circZFR, si-circZFR + vector, or si-circZFR + HMGA2. (A and B) Western blot assay was performed to detect the protein expression of HMGA2. (C-F) ECAR and OCR were measured by Seahorse Bioscience XF96 extracellular flux analyzer. (G-L) Glucose Uptake Colorimetric Assay kit, Lactate Assay kit and ATP Colorimetric Assay kit were used for detecting glucose uptake, lactate production and ATP level, respectively. (M and N) MTT assay was applied to examine cell proliferation. (O and P) Cell apoptosis was analyzed by flow cytometry analysis. *P < 0.05. (TIFF 1687 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Yin, S., Zheng, M. et al. Circular RNA circZFR Promotes Hepatocellular Carcinoma Progression by Regulating miR-375/HMGA2 Axis. Dig Dis Sci 66, 4361–4373 (2021). https://doi.org/10.1007/s10620-020-06805-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06805-2

Keywords

Navigation