Skip to main content

Advertisement

Log in

Folate Intake and Risk of Pancreatic Cancer: A Systematic Review and Updated Meta-Analysis of Epidemiological Studies

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Introduction

Pancreatic cancer is one of the most fatal malignancies and primary prevention strategies are limited. Epidemiological studies focusing on the association between folate intake and pancreatic cancer risk have reported inconsistent findings.

Methods

A systematic search of the literature was conducted using the PubMed and EMBASE databases. A systematic review and meta-analysis of eligible studies was performed to assess the association between folate intake and risk of pancreatic cancer.

Results

A total of 16 studies involving 5654 cases and 1,009,374 individuals were included. The result showed a significant association of folate intake with a decreased risk of pancreatic cancer, with a pooled OR of 0.82 (95% CI: 0.69–0.97, P = 0.019) for the highest category of intake vs. the lowest. The data suggested that high intake of folate may contribute to the prevention of pancreatic cancer. However, the association was observed only in case–control studies (OR = 0.78, 95% CI: 0.65–0.93, P = 0.006), but not in cohort studies (RR = 0.85, 95% CI: 0.66–1.09, P = 0.244). Dose–response meta-analysis showed that an increment of folate intake (100 μg/day) was marginally associated with the risk of pancreatic cancer, with a pooled OR of 0.97 (95% CI: 0.93–1.00, P = 0.053).

Conclusion

High folate intake might be inversely associated with pancreatic cancer risk, which needs to be confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol. 2019;10:10–27.

    PubMed  PubMed Central  Google Scholar 

  2. Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol. 2016;22:9694–9705.

    PubMed  PubMed Central  Google Scholar 

  3. Afzal A, Suhong L, Gage BF, et al. Splanchnic vein thrombosis predicts worse survival in patients with advanced pancreatic cancer. Thromb Res. 2019;185:125–131.

    PubMed  Google Scholar 

  4. Kirkegård J, Gaber C, Lund JL, et al. Acute pancreatitis as an early marker of pancreatic cancer and cancer stage, treatment, and prognosis. Cancer Epidemiol. 2019;64:101647.

    PubMed  PubMed Central  Google Scholar 

  5. Ikubo A, Matsufuji S, Morifuji Y, et al. Clinical features, prognosis, diagnostic approaches and treatment of multiple primary malignancies in the digestive system. Anticancer Res. 2019;39:6863–6870.

    PubMed  Google Scholar 

  6. Ma Y, Pu Y, Peng L, et al. Identification of potential hub genes associated with the pathogenesis and prognosis of pancreatic duct adenocarcinoma using bioinformatics meta-analysis of multi-platform datasets. Oncol Lett. 2019;18:6741–6751.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu S, Qin Z, Xu J, et al. Irreversible electroporation combined with chemotherapy for unresectable pancreatic carcinoma: a prospective cohort study. Onco Targets Ther. 2019;12:1341–1350.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mackay TM, van Erning FN, van der Geest LGM, et al. Association between primary origin (head, body and tail) of metastasised pancreatic ductal adenocarcinoma and oncologic outcome: a population-based analysis. Eur J Cancer. 2019;106:99–105.

    PubMed  Google Scholar 

  9. Ben QW, Liu J, Sun YW, et al. Cigarette smoking and mortality in patients with pancreatic cancer: a systematic review and meta-analysis. Pancreas. 2019;48:985–995.

    CAS  PubMed  Google Scholar 

  10. Koyanagi YN, Ito H, Matsuo K, et al. Smoking and pancreatic cancer incidence: a pooled analysis of 10 population-based cohort studies in Japan. Cancer Epidemiol Biomark Prev. 2019;28:1370–1378.

    Google Scholar 

  11. Pei-Ying Lu, Shu Long, Shen Shan-Shan, Chen Xu-Jiao, Zhang Xiao-Yan. Dietary patterns and pancreatic cancer risk: a meta-analysis. Nutrients. 2017;9:38.

    Google Scholar 

  12. Zheng Z, Zheng R, He Y, et al. Risk factors for pancreatic cancer in China: a multicenter case-control study. J Epidemiol. 2016;26:64–70.

    PubMed  PubMed Central  Google Scholar 

  13. Paternoster S, Falasca M. The intricate relationship between diabetes, obesity and pancreatic cancer. Biochim Biophys Acta Rev Cancer. 2019;1873:188326.

    PubMed  Google Scholar 

  14. Zhou B, Wu D, Liu H, et al. Obesity and pancreatic cancer: an update of epidemiological evidence and molecular mechanisms. Pancreatology. 2019;19:941–950.

    CAS  PubMed  Google Scholar 

  15. Tirkes T, Jeon CY, Li L, et al. Association of pancreatic steatosis with chronic pancreatitis, obesity, and type 2 diabetes mellitus. Pancreas. 2019;48:420–426.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Saluja A, Maitra A. Pancreatitis and pancreatic cancer. Gastroenterology. 2019;156:1937–1940.

    PubMed  Google Scholar 

  17. Hart PA, Conwell DL. Chronic pancreatitis: managing a difficult disease. Am J Gastroenterol. 2019;00:1–7.

    Google Scholar 

  18. Wang YT, Gou YW, Jin WW, Xiao M, Fang HY. Association between alcohol intake and the risk of pancreatic cancer: a dose-response meta-analysis of cohort studies. BMC Cancer. 2016;16:212.

    PubMed  PubMed Central  Google Scholar 

  19. Underhill-Blazey M, Blonquist T, Lawrence J, Hong F, Yurgelun MB, Syngal S. Health behaviours and beliefs in individuals with familial pancreatic cancer. Fam Cancer. 2019;18:457–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsai HJ, Chang JS. Environmental risk factors of pancreatic cancer. J Clin Med. 2019;8:1427.

    CAS  PubMed Central  Google Scholar 

  21. Risch HA, Lu L, Streicher SA, et al. Aspirin use and reduced risk of pancreatic cancer. Cancer Epidemiol Biomark Prev. 2017;26:68–74.

    CAS  Google Scholar 

  22. Karpiński TM. The microbiota and pancreatic cancer. Gastroenterol Clin North Am. 2019;48:447–464.

    PubMed  Google Scholar 

  23. Maisonneuve P, Lowenfels AB. Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int J Epidemiol. 2015;44:186–198.

    PubMed  Google Scholar 

  24. Zheng J, Wirth MD, Merchant AT, et al. Inflammatory potential of diet, inflammation-related lifestyle factors and risk of pancreatic cancer: results from the NIH-AARP Diet and Health Study. Cancer Epidemiol Biomark Prev. 2019;28:1266–1270.

    Google Scholar 

  25. Moukayed M, Grant WB. The roles of UVB and vitamin D in reducing risk of cancer incidence and mortality: a review of the epidemiology, clinical trials, and mechanisms. Rev Endocr Metab Disord. 2017;18:167–182.

    CAS  PubMed  Google Scholar 

  26. Li D, Tang H, Wei P, Zheng J, Daniel CR, Hassan MM. Vitamin C andvitamin E mitigate the risk of pancreatic ductal adenocarcinoma from meat-derived mutagen exposure in adults in a case-control study. J Nutr. 2019;149:1443–1450.

    PubMed  PubMed Central  Google Scholar 

  27. Obón-Santacana M, Luján-Barroso L, Freisling H, et al. Consumption of nuts and seeds and pancreatic ductal adenocarcinoma risk in the European prospective investigation into cancer and nutrition. Int J Cancer. 2020;146:76–84.

    PubMed  Google Scholar 

  28. Poirier AE, Ruan Y, Hebert LA, et al. Estimates of the current and future burden of cancer attributable to low fruit and vegetable consumption in Canada. Prev Med. 2019;122:20–30.

    PubMed  Google Scholar 

  29. Koulouris AI, Luben R, Banim P, Hart AR. Dietary fiber and the risk of pancreatic cancer. Pancreas. 2019;48:121–125.

    CAS  PubMed  Google Scholar 

  30. Asante I, Chui D, Pei H, et al. Alterations in folate-dependent one-carbon metabolism as colon cell transition from normal to cancerous. J Nutr Biochem. 2019;69:1–9.

    CAS  PubMed  Google Scholar 

  31. Wu S, Zhang J, Li F, et al. One-carbon metabolism links nutrition intake to embryonic development via epigenetic mechanisms. Stem Cells Int. 2019;2019:3894101.

    PubMed  PubMed Central  Google Scholar 

  32. Gurwara S, Ajami NJ, Jang A, et al. Dietary nutrients involved in one-carbon metabolism and colonic mucosa-associated gut microbiome in individuals with an endoscopically normal colon. Nutrients. 2019;11:613.

    CAS  PubMed Central  Google Scholar 

  33. Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab. 2017;25:27–42.

    CAS  PubMed  Google Scholar 

  34. Perrier F, Viallon V, Ambatipudi S, et al. Association of leukocyte DNA methylation changes with dietary folate and alcohol intake in the EPIC study. Clin Epigenetics. 2019;11:57.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ben Fradj MK, Mrad Dali K, Kallel A, et al. Interaction effects of plasma vitamins A, E, D, B9, and B12 and tobacco exposure in urothelial bladder cancer: a multifactor dimensionality reduction analysis. Nutr Cancer. 2019;6:1–8.

    Google Scholar 

  36. Newman AC, Maddocks ODK. One-carbon metabolism in cancer. Br J Cancer. 2017;116:1499–1504.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Essén A, Santaolalla A, Garmo H, et al. Baseline serum folate, vitamin B12 and the risk of prostate and breast cancer using data from the Swedish AMORIS cohort. Cancer Causes Control. 2019;30:603–615.

    PubMed  Google Scholar 

  38. Arthur RS, Kirsh VA, Rohan TE. Dietary B-vitamin intake and risk of breast, endometrial, ovarian and colorectal cancer among canadians. Nutr Cancer. 2019;7:1–11.

    Google Scholar 

  39. Liu W, Zhou H, Zhu Y, Tie C. Associations between dietary folate intake and risks of esophageal, gastric and pancreatic cancers: an overall and dose-response meta-analysis. Oncotarget. 2017;8:86828–86842.

    PubMed  PubMed Central  Google Scholar 

  40. Park JY, Bueno-de-Mesquita HB, Ferrari P, et al. Dietary folate intake and pancreatic cancer risk: results from the European prospective investigation into cancer and nutrition. Int J Cancer. 2019;144:1511–1521.

    CAS  PubMed  Google Scholar 

  41. Marley AR, Fan H, Hoyt ML, Anderson KE, Zhang J. Intake of methyl-related nutrients and risk of pancreatic cancer in a population-based case-control study in Minnesota. Eur J Clin Nutr. 2018;72:1128–1135.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yallew W, Bamlet WR, Oberg AL, et al. Association between alcohol consumption, folate intake, and risk of pancreatic cancer: a case-control study. Nutrients. 2017;9:48.

    Google Scholar 

  43. Huang JY, Butler LM, Wang R, Jin A, Koh WP, Yuan JM. Dietary intake of one-carbon metabolism-related nutrients and pancreatic cancer risk: the Singapore Chinese health study. Cancer Epidemiol Biomark Prev. 2016;25:417–424.

    CAS  Google Scholar 

  44. Tavani A, Malerba S, Pelucchi C, et al. Dietary folates and cancer risk in a network of case-control studies. Ann Oncol. 2012;23:2737–2742.

    CAS  PubMed  Google Scholar 

  45. Chuang SC, Stolzenberg-Solomon R, Ueland PM, et al. A U-shaped relationship between plasma folate and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. Eur J Cancer. 2011;47:1808–1816.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bravi F, Polesel J, Bosetti C, et al. Dietary intake of selected micronutrients and the risk of pancreatic cancer: an Italian case-control study. Ann Oncol. 2011;22:202–206.

    CAS  PubMed  Google Scholar 

  47. Oaks BM, Dodd KW, Meinhold CL, Jiao L, Church TR, Stolzenberg-Solomon RZ. Folate intake, post-folic acid grain fortification, and pancreatic cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Am J Clin Nutr. 2010;91:449–455.

    CAS  PubMed  Google Scholar 

  48. Keszei AP, Verhage BA, Heinen MM, Goldbohm RA, van den Brandt PA. Dietary folate and folatevitamers and the risk of pancreatic cancer in the Netherlands cohort study. Cancer Epidemiol Biomark Prev. 2009;18:1785–1791.

    CAS  Google Scholar 

  49. Gong Z, Holly EA, Bracci PM. Intake of folate, vitamins B6, B12 and methionine and risk of pancreatic cancer in a large population-based case-control study. Cancer Causes Control. 2009;20:1317–1325.

    PubMed  PubMed Central  Google Scholar 

  50. Anderson LN, Cotterchio M, Gallinger S. Lifestyle, dietary, and medical history factors associated with pancreatic cancer risk in Ontario, Canada. Cancer Causes Control. 2009;20:825–834.

    PubMed  PubMed Central  Google Scholar 

  51. Schernhammer E, Wolpin B, Rifai N, et al. Plasma folate, vitamin B6, vitamin B12, and homocysteine and pancreatic cancer risk in four large cohorts. Cancer Res. 2007;67:5553–5560.

    CAS  PubMed  Google Scholar 

  52. Larsson SC, Håkansson N, Giovannucci E, Wolk A. Folate intake and pancreatic cancer incidence: a prospective study of Swedish women and men. J Natl Cancer Inst. 2006;98:407–413.

    CAS  PubMed  Google Scholar 

  53. Skinner HG, Michaud DS, Giovannucci EL, et al. A prospective study of folate intake and the risk of pancreatic cancer in men and women. Am J Epidemiol. 2004;160:248–258.

    PubMed  Google Scholar 

  54. Stolzenberg-Solomon RZ, Pietinen P, Barrett MJ, Taylor PR, Virtamo J, Albanes D. Dietary and other methyl-group availability factors and pancreatic cancer risk in a cohort of male smokers. Am J Epidemiol. 2001;153:680–687.

    CAS  PubMed  Google Scholar 

  55. Stolzenberg-Solomon RZ, Albanes D, Nieto FJ, et al. Pancreatic cancer risk and nutrition-related methyl-group availability indicators in male smokers. J Natl Cancer Inst. 1999;91:535–541.

    CAS  PubMed  Google Scholar 

  56. Bao Y, Michaud DS, Spiegelman D, et al. Folate intake and risk of pancreatic cancer: pooled analysis of prospective cohort studies. J Natl Cancer Inst. 2011;103:1840–1850.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin HL, An QZ, Wang QZ, Liu CX. Folate intake and pancreatic cancer risk: an overall and dose-response meta-analysis. Public Health. 2013;127:607–613.

    CAS  PubMed  Google Scholar 

  58. Ebara S. Nutritional role of folate. Congenit Anom (Kyoto). 2017;57:138–141.

    CAS  PubMed  Google Scholar 

  59. Hogervorst E, Kassam S, Kridawati A, et al. Nutrition research in cognitive impairment/dementia, with a focus on soya and folate. Proc Nutr Soc. 2017;76:437–442.

    CAS  PubMed  Google Scholar 

  60. Pieroth R, Paver S, Day S, Lammersfeld C. Folate and its impact on cancer risk. Curr Nutr Rep. 2018;7:70–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Fan C, Yu S, Zhang S, Ding X, Su J, Cheng Z. Association between folate intake and risk of head and neck squamous cell carcinoma: an overall and dose-response PRISMA meta-analysis. Med (Baltimore). 2017;96:e8182.

    CAS  Google Scholar 

  62. Selhub J, Rosenberg IH. Excessive folic acid intake and relation to adverse health outcome. Biochimie. 2016;126:71–78.

    CAS  PubMed  Google Scholar 

  63. Liew SC. Folic acid and diseases—supplement it or not? Rev Assoc Med Bras. 1992;2016:90–100.

    Google Scholar 

  64. Joob B, Wiwanitkit V. Folate intake and risk of esophageal cancer. Eur J Cancer Prev. 2019;28:382.

    PubMed  Google Scholar 

  65. Arthur RS, Kirsh VA, Rohan TE. Dietary B-vitamin intake and risk of breast, endometrial, ovarian and colorectal cancer among canadians. Nutr Cancer. 2019;71:1067–1077.

    CAS  PubMed  Google Scholar 

  66. Du L, Wang Y, Zhang H, Zhang H, Gao Y. Folate intake and the risk of endometrial cancer: a meta-analysis. Oncotarget. 2016;7:85176–85184.

    PubMed  PubMed Central  Google Scholar 

  67. Dugué PA, Bassett JK, Brinkman MT, et al. Dietary intake of nutrients involved in one-carbon metabolism and risk of gastric cancer: a prospective study. Nutr Cancer. 2019;71:605–614.

    PubMed  Google Scholar 

  68. Takata Y, Shu XO, Buchowski MS, et al. Food intake of folate, folic acid and other B vitamins with lung cancer risk in a low-income population in the Southeastern United States. Eur J Nutr. 2019;59:671–683.

    PubMed  Google Scholar 

  69. Catala GN, Bestwick CS, Russell WR, et al. Folate, genomic stability and colon cancer: the use of single cell gel electrophoresis in assessing the impact of folate in vitro, in vivo and in human biomonitoring. Mutat Res. 2019;843:73–80.

    CAS  PubMed  Google Scholar 

  70. Zgheib R, Battaglia-Hsu SF, Hergalant S, et al. Folate can promote the methionine-dependent reprogramming of glioblastoma cells towards pluripotency. Cell Death Dis. 2019;10:596.

    PubMed  PubMed Central  Google Scholar 

  71. Wang P, Chen Y, Wang L, et al. The intervention mechanism of folic acid for benzo(a)pyrene toxic effects in vitro and in vivo. Eur J Cancer Prev. 2019;28:355–364.

    CAS  PubMed  Google Scholar 

  72. Rizzo A, Napoli A, Roggiani F, Tomassetti A, Bagnoli M, Mezzanzanica D. One-carbon metabolism: biological players in epithelial ovarian cancer. Int J Mol Sci. 2018;19:2092.

    PubMed Central  Google Scholar 

  73. Min DJ, Vural S, Krushkal J. Association of transcriptional levels of folate-mediated one-carbon metabolism-related genes in cancer cell lines with drug treatment response. Cancer Genet. 2019;237:19–38.

    CAS  PubMed  Google Scholar 

  74. Fenech M. Nutrition and genome health. Forum Nutr. 2007;60:49–65.

    CAS  PubMed  Google Scholar 

  75. Wang HC, Huo YN, Lee WS. Folic acid prevents the progesterone-promoted proliferation and migration in breast cancer cell lines. Eur J Nutr. 2019.

  76. Fernández M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci. 2017;9:790–810.

    PubMed  PubMed Central  Google Scholar 

  77. Ting PC, Lee WR, Huo YN, Hsu SP, Lee WS. Folic acid inhibits colorectal cancer cell migration. J Nutr Biochem. 2019;63:157–164.

    CAS  PubMed  Google Scholar 

  78. Zeng J, Wang K, Ye F, et al. Folate intake and the risk of breast cancer: an up-to-date meta-analysis of prospective studies. Eur J Clin Nutr. 2019;73:1657–1660.

    PubMed  Google Scholar 

  79. Kim SJ, Zhang CXW, Demsky R, et al. Folic acid supplement use and breast cancer risk in BRCA1 and BRCA2 mutation carriers: a case-control study. Breast Cancer Res Treat. 2019;174:741–748.

    CAS  PubMed  Google Scholar 

  80. Dhana A, Yen H, Li T, Holmes MD, Qureshi AA, Cho E. Intake of folate and other nutrients related to one-carbon metabolism and risk of cutaneous melanoma among US women and men. Cancer Epidemiol. 2018;55:176–183.

    PubMed  PubMed Central  Google Scholar 

  81. Kim HJ, Jung S, Eliassen AH, Chen WY, Willett WC, Cho E. Alcohol consumption and breast cancer risk in younger women according to family history of breast cancer and folate intake. Am J Epidemiol. 2017;186:524–531.

    PubMed  PubMed Central  Google Scholar 

  82. Seitz HK, Pelucchi C, Bagnardi V, La Vecchia C. Epidemiology and pathophysiology of alcohol and breast cancer: update 2012. Alcohol Alcohol. 2012;47:204–212.

    PubMed  Google Scholar 

  83. Frydenberg H, Flote VG, Larsson IM, Barrett ES, Furberg AS, Ursin G. Alcohol consumption, endogenous estrogen and mammographic density among premenopausal women. Breast Cancer Res. 2015;17:103.

    PubMed  PubMed Central  Google Scholar 

  84. Stanisławska-Sachadyn A, Borzyszkowska J, Krzemiński M, et al. Folate/homocysteine metabolism and lung cancer risk among smokers. PLoS One. 2019;14:e0214462.

    PubMed  PubMed Central  Google Scholar 

  85. Sobczyńska-Malefora A, Harrington DJ. Laboratory assessment of folate (vitamin B9) status. J Clin Pathol. 2018;71:949–956.

    PubMed  Google Scholar 

  86. Dixit R, Nettem S, Madan SS, et al. Folate supplementation in people with sickle cell disease. Cochrane Database Syst Rev. 2018;3:CD011130.

    PubMed  Google Scholar 

  87. Zara-Lopes T, Galbiatti-Dias ALS, Castanhole-Nunes MMU, et al. Polymorphisms in MTHFR, MTR, RFC1 and CßS genes involved in folate metabolism and thyroid cancer: a case-control study. Arch Med Sci. 2019;15:522–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Gong JM, Shen Y, Shan WW, He YX. The association between MTHFR polymorphism and cervical cancer. Sci Rep. 2018;8:7244.

    PubMed  PubMed Central  Google Scholar 

  89. Román GC, Mancera-Páez O, Bernal C. Epigenetic factors in late-onset alzheimer’s disease: MTHFR and CTH gene polymorphisms, metabolic transsulfuration and methylation pathways, and B Vitamins. Int J Mol Sci. 2019;20:E319.

    PubMed  Google Scholar 

Download references

Acknowledgment

We thank Editage of Cactus Communications for the English language editing of the article.

Funding

This work was funded by Fundamental Research Funds for the Central Universities (XDJK2020D030).

Author information

Authors and Affiliations

Authors

Contributions

HC, HJF and JZ developed the study concept, designed the study, conducted the electronic searches and wrote the draft of the manuscript. HJF, CL, YG and YXZ conducted validity assessment, data extraction and provided critical review of the manuscript. HJF, JZ and CL tabulated data and conducted meta-analyses. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hui Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study formal consent is not required.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Zeng, J., Liu, C. et al. Folate Intake and Risk of Pancreatic Cancer: A Systematic Review and Updated Meta-Analysis of Epidemiological Studies. Dig Dis Sci 66, 2368–2379 (2021). https://doi.org/10.1007/s10620-020-06525-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06525-7

Keywords

Navigation