Skip to main content

Advertisement

Log in

Enteropathogenic Escherichia coli Infection Inhibits Intestinal Ascorbic Acid Uptake via Dysregulation of Its Transporter Expression

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Enteropathogenic Escherichia coli (EPEC) infection causes prolonged, watery diarrhea leading to morbidity and mortality. Although EPEC infection impacts nutrient transporter function and expression in intestinal epithelial cells, the effects of EPEC infection on intestinal absorption of ascorbic acid (AA) have not yet been investigated.

Aims

To investigate the effect of EPEC infection on intestinal AA uptake process and expression of both AA transporters.

Methods

We used two experimental models: human-derived intestinal epithelial Caco-2 cells and mice. 14C-AA uptake assay, Western blot, RT-qPCR, and promoter assay were performed.

Results

EPEC (WT) as well as ΔespF and ΔespG/G2 mutant-infected Caco-2 cells showed markedly inhibited AA uptake, while other mutants (ΔescN, ΔespA, ΔespB, and ΔespD) did not affect AA uptake. Infection also reduced protein and mRNA expression levels for both hSVCT1 and hSVCT2. EPEC-infected mice showed marked inhibitory effect on AA uptake and decreased protein and mRNA expression levels for both mSVCT1 and mSVCT2 in jejunum and colon. MicroRNA regulators of SVCT1 and SVCT2 (miR103a, miR141, and miR200a) were upregulated significantly upon EPEC infection in both Caco-2 and mouse jejunum and colon. In addition, expression of the accessory protein glyoxalate reductase/hydroxypyruvate reductase (GRHPR), which regulates SVCT1 function, was markedly decreased by EPEC infection in both models.

Conclusions

These findings suggest that EPEC infection causes inhibition in AA uptake through a multifactorial dysregulation of SVCT1 and SVCT2 expression in intestinal epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Packer L, Fuchs J. Vitamin C in Health and Disease. New York: Marcel Dekker Inc.; 1997.

    Google Scholar 

  2. Carr AC, Maggini S. Vitamin C and immune function. Nutrients. 2017;9:1211.

    PubMed Central  Google Scholar 

  3. Carr AC, Frei B. Toward a new recommended dietary allowance for Vitamin C based on antioxidant and health effects in humans. Am J Clin Nutr. 1999;69:1086–1107.

    CAS  PubMed  Google Scholar 

  4. Simon JA, Hudes ES. Serum ascorbic acid and gallbladder disease prevalence among US adults. Arch Int Med. 2000;160:931–936.

    CAS  Google Scholar 

  5. Harrison SA, Torgerson S, Hayashi P, et al. Vitamin E and vitamin C treatment improves fibrosis in patients with nonalcoholic steatohepatitis. Am J Gastroenterol. 2003;98:2485–2490.

    CAS  PubMed  Google Scholar 

  6. Li Y, Schellhorn HE. New developments and novel therapeutic perspectives for vitamin. J Nutr. 2007;137:2171–2184.

    CAS  PubMed  Google Scholar 

  7. Harrison FE. A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease. J Alzheimers Dis. 2012;29:711–726.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nishikimi M, Fukuyama R, Minoshima S, et al. Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-γ-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J Biol Chem. 1994;269:13685–13688.

    CAS  PubMed  Google Scholar 

  9. Sotiriou S, Gispert S, Cheng J, et al. Ascorbic-acid transporter Slc23a2 is essential for vitamin C transport into the brain and for perinatal survival. Nat Med. 2002;8:514–517.

    CAS  PubMed  Google Scholar 

  10. Corpe CP, Tu H, Eck P, et al. Vitamin C transporter Slc23a1 links renal reabsorption, vitamin C tissue accumulation, and perinatal survival in mice. J Clin Invest. 2010;120:1069–1083.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Daruwala R, Song J, Koh WS, et al. Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett. 1999;460:480–484.

    CAS  PubMed  Google Scholar 

  12. Rajan PD, Huang W, Dutta B, et al. Human placental sodium dependent vitamin C transporter (SVCT2): molecular cloning and transport function. Biochem Biophys Res Commun. 1999;262:762–768.

    CAS  PubMed  Google Scholar 

  13. Liang WJ, Johnson D, Jarvis SM. Vitamin C transport systems of mammalian cells. Molec Membr Biol. 2001;18:87–95.

    CAS  Google Scholar 

  14. Savini I, Rossi A, Pierro C, et al. SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids. 2008;34:347–355.

    CAS  PubMed  Google Scholar 

  15. Subramanian VS, Marchant JS, Boulware MJ, et al. A C-terminal region dictates the apical plasma membrane targeting of the human sodium-dependent vitamin C transporter-1 in polarized epithelia. J Biol Chem. 2004;279:27719–27728.

    CAS  PubMed  Google Scholar 

  16. Boyer JC, Campbell CE, Sigurdson WJ, et al. Polarized localization of vitamin C transporters, SVCT1 and SVCT2, in epithelial cells. Biochem Biophys Res Commun. 2005;334:150–156.

    CAS  PubMed  Google Scholar 

  17. Subramanian VS, Srinivasan P, Wildman AJ, et al. Molecular mechanism(s) involved in differential expression of vitamin C transporters along the intestinal tract. Am J Physiol Gastrointest Liver Physiol. 2017;312:G340–G347.

    PubMed  Google Scholar 

  18. Adhikari M, Coovadi Y, Hewitt J. Enteropathogenic Escherichia coli (EPEC) and enterotoxigenic (ETEC) related diarrhoeal disease in a neonatal unit. Ann Trop Paediatr. 1985;5:19–22.

    CAS  PubMed  Google Scholar 

  19. Croxen MA, Finaly BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol. 2010;8:26–38.

    CAS  PubMed  Google Scholar 

  20. Fagundes-Neto U, Scaletsky IC. The gut at war: the consequences of enteropathogenic Escherichia coli infection as a factor of diarrhea and malnutrition. São Paulo Med J. 2000;118:21–29.

    CAS  PubMed  Google Scholar 

  21. Guerrant RL, Oriá RB, Moore SR, et al. Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr Rev. 2008;66:487–505.

    PubMed  Google Scholar 

  22. Viswanathan VK, Hodges K, Hecht G. Enteric infection meets intestinal function: how bacterial pathogens cause diarrhoea. Nat Rev Microbiol. 2009;7:110–119.

    CAS  PubMed  Google Scholar 

  23. Tomson FL, Viswanathan VK, Kanack KJ, et al. Enteropathogenic Escherichia coli EspG disrupts microtubules and in conjunction with Orf3 enhances perturbation of the tight junction barrier. Mol Microbiol. 2005;56:447–464.

    CAS  PubMed  Google Scholar 

  24. Zyrek AA, Cichon C, Helms S, et al. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol. 2007;9:804–816.

    CAS  PubMed  Google Scholar 

  25. Collington GK, Booth IW, Knutton S. Rapid modulation of electrolyte transport in Caco-2 cell monolayers by enteropathogenic Escherichia coli (EPEC) infection. Gut.. 1998;42:200–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ashokkumar B, Kumar JS, Hecht GA, et al. Enteropathogenic Escherichia coli inhibits intestinal vitamin B1 (thiamin) uptake: studies with human-derived intestinal epithelial Caco-2 cells. Am J Physiol Gastrointest Liver Physiol. 2009;297:G825–G833.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Spitz J, Yuhan R, Koutsouris A, et al. Enteropathogenic Escherichia coli adherence to intestinal epithelial monolayers diminishes barrier function. Am J Physiol. 1995;268:G374–G379.

    CAS  PubMed  Google Scholar 

  28. Hecht G, Hodges K, Gill RK, et al. Differential regulation of Na +/H + exchange isoform activities by enteropathogenic E. coli in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2004;287:G370–G378.

    CAS  PubMed  Google Scholar 

  29. Borthakur A, Gill RK, Hodges HK, et al. Enteropathogenic Escherichia coli inhibits butyrate uptake in Caco-2 cells by altering the apical membrane MCT1 level. Am J Physiol Gastrointest Liver Physiol. 2006;290:G30–G35.

    CAS  PubMed  Google Scholar 

  30. Gill RK, Borthakur A, Hodges K, et al. Mechanism underlying inhibition of intestinal apical Cl–/OH– exchange following infection with enteropathogenic E. coli. J Clin Invest.. 2007;117:428–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Esmaili A, Nazir SF, Borthakur A, et al. Enteropathogenic Escherichia coli infection inhibits intestinal serotonin transporter function and expression. Gastroenterology. 2009;137:2074–2083.

    CAS  PubMed  Google Scholar 

  32. Choi HJ, Kim J, Do KH, et al. Prolonged NF-κB activation by a macrophage inhibitory cytokine 1-linked signal in enteropathogenic Escherichia coli-infected epithelial cells. Infect Immun. 2013;81:1860–1869.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith AD, Yan X, Chen C, et al. Understanding the host-adapted state of citrobacter rodentium by transcriptomic analysis. Arch Microbiol. 2016;198:353–362.

    CAS  PubMed  Google Scholar 

  34. Dupont A, Sommer F, Zhang K, et al. Age-dependent susceptibility to enteropathogenic Escherichia coli (EPEC) infection in mice. PLOS Pathog. 2016;12:e1005616.

    PubMed  PubMed Central  Google Scholar 

  35. Subramanian VS, Sabui S, Moradi H, et al. Inhibition of intestinal ascorbic acid uptake by lipopolysaccharide is mediated via transcriptional mechanisms. Biochim Biophys Acta Biomembr. 2018;1860:556–565.

    CAS  PubMed  Google Scholar 

  36. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta DeltaC (T)) method. Methods. 2001;25:402–408.

    CAS  PubMed  Google Scholar 

  37. Anandam KY, Alwan OA, Subramanian VS, et al. Effect of the proinflammatory cytokine TNF-α on intestinal riboflavin uptake: inhibition mediated via transcriptional mechanism(s). Am J Physiol Cell Physiol. 2018;315:C653–C663.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Reidling JC, Subramanian VS, Dahhan T, et al. Mechanism and regulation of vitamin C uptake: studies of the hSVCT systems in human liver epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2008;295:G1217–G1227.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Subramenium GA, Sabui S, Marchant JS, et al. Enterotoxigenic Escherichia coli heat liable enterotoxin inhibits intestinal ascorbic acid uptake via a cAMP-dependent NF-κB-mediated pathway. Am J Physiol Gastrointest Liver Physiol. 2019;316:G55–G63.

    CAS  PubMed  Google Scholar 

  40. Roxas JL, Monasky RS, Roxas BAP, et al. Enteropathogenic Escherichia coli EspH-mediated rho GTPase inhibition results in desmosomal perturbations. Cell Mol Gastroenterol Hepatol. 2018;6:163–180.

    PubMed  PubMed Central  Google Scholar 

  41. Gauthier A, Puente JL, Finlay BB. Secretin of the enteropathogenic Escherichia coli type III secretion system requires components of the type III apparatus for assembly and localization. Infect Immun. 2003;71:3310–3319.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nguyen HT, Dalmasso G, Müller S, et al. Crohn’s disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology. 2014;146:508–519.

    CAS  PubMed  Google Scholar 

  43. Sabharwal H, Cichon C, Ölschläger TA, et al. Interleukin-8, CXCL1, and MicroRNA miR-146a responses to probiotic Escherichia coli Nissle 1917 and enteropathogenic E coli in human intestinal epithelial T84 and monocytic THP-1 cells after apical or basolateral infection. Infect Immun. 2016;84:2482–2492.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sangani R, Periyasamy-Thandavan S, Kolhe R, et al. MicroRNAs-141 and 200a regulate the SVCT2 transporter in bone marrow stromal cells. Mol Cell Endocrinol. 2015;410:19–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Subramanian VS, Sabui S, Marchant JS, et al. MicroRNA-103a regulates sodium-dependent vitamin C transporter-1 expression in intestinal epithelial cells. J Nutr Biochem. 2019;65:46–53.

    CAS  PubMed  Google Scholar 

  46. Subramanian VS, Nabokina SM, Patton JR, et al. Glyoxalate reductase/hydroxypyruvate reductase interacts with the sodium-dependent vitamin C transporter-1 to regulate cellular vitamin C homeostasis. Am J Physiol Gastrointest Liver Physiol. 2013;304:G1079–G1086.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu J, Torres AG. Enteropathogenic Escherichia coli: foe or innocent bystander? Clin Microbiol Infect. 2015;21:729–734.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhuang X, Chen Z, He C, et al. Modulation of host signaling in the inflammatory response by enteropathogenic Escherichia coli virulence proteins. Cell Mol Immunol. 2017;14:237–244.

    CAS  PubMed  Google Scholar 

  49. Glotfelty LG, Zahs A, Hodges K, et al. Enteropathogenic E. coli effectors EspG1/G2 disrupt microtubules, contribute to tight junction perturbation and inhibit restoration. Cell Microbiol. 2014;16:1767–1783.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Subramanian VS, Sabui S, Heskett CW, et al. Sodium butyrate enhances intestinal riboflavin uptake via induction of expression of riboflavin transporter-3 (RFVT3). Dig Dis Sci. 2019;64:84–92.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The current study was supported by the National Institutes of Health grants DK107474 (VSS), DK56061 (HMS), AA018071 (HMS), and GM088790 (JSM), MH108154 (MGG), as well as a grant from the Department of Veterans Affairs (HMS). We thank Dr. Gail Hecht (Loyola University, Chicago) for providing EPEC mutant strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veedamali S. Subramanian.

Ethics declarations

Conflict of interests

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heskett, C.W., Teafatiller, T., Hennessey, C. et al. Enteropathogenic Escherichia coli Infection Inhibits Intestinal Ascorbic Acid Uptake via Dysregulation of Its Transporter Expression. Dig Dis Sci 66, 2250–2260 (2021). https://doi.org/10.1007/s10620-020-06389-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06389-x

Keywords

Navigation