Skip to main content

Advertisement

Log in

The Role of Gastrointestinal-Related Fatty Acid-Binding Proteins as Biomarkers in Gastrointestinal Diseases

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The fatty acid-binding proteins play a major role in intracellular transportation of long-chain fatty acids. Nine fatty acid-binding proteins have been identified, with each having individual tissue-specific functions in addition to regulation of fatty acids. This review focuses on the three fatty acid-binding proteins found in the gastrointestinal tract and discusses their role as diagnostic or disease monitoring markers in neonatal necrotizing enterocolitis, acute mesenteric ischemia, celiac disease, and inflammatory bowel disease. Of these three fatty acid-binding proteins, intestinal fatty acid-binding protein is of the most interest due to its exclusive expression in the gastrointestinal tract. The elevation of intestinal fatty acid-binding protein in blood and urine reflects enterocyte damage, regardless of the underlying cause. The short half-life of intestinal fatty acid-binding protein also means it is a relatively sensitive marker. In contrast, there is currently less evidence to support liver fatty acid-binding protein and ileal bile acid-binding protein as sensitive biomarkers in these conditions. More extensive studies with specific endpoints are required to validate the roles of these fatty acid-binding proteins in gastrointestinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ockner RK, Manning JA, Poppenhausen RB, Ho WK. A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science.. 1972;177:56–58.

    Article  CAS  Google Scholar 

  2. Chmurzynska A. The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet.. 2006;47:39–48. https://doi.org/10.1007/BF03194597.

    Article  PubMed  Google Scholar 

  3. Storch J, Thumser AE. Tissue-specific functions in the fatty acid-binding protein family. The Journal of biological Chem.. 2010;285:32679–32683. https://doi.org/10.1074/jbc.R110.135210.

    Article  CAS  Google Scholar 

  4. Rodriguez Sawicki L, Bottasso Arias NM, Scaglia N, et al. FABP1 knockdown in human enterocytes impairs proliferation and alters lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids.. 2017;1862:1587–1594. https://doi.org/10.1016/j.bbalip.2017.09.006.

    Article  PubMed  CAS  Google Scholar 

  5. Lagakos WS, Gajda AM, Agellon L, et al. Different functions of intestinal and liver-type fatty acid-binding proteins in intestine and in whole body energy homeostasis. Am J Physiol Gastrointest Liver Physiol.. 2011;300:G803–G814. https://doi.org/10.1152/ajpgi.00229.2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bottasso Arias NM, Garcia M, Bondar C, et al. Expression Pattern of Fatty Acid Binding Proteins in Celiac Disease Enteropathy. Mediators Inflamm.. 2015;2015:738563. https://doi.org/10.1155/2015/738563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Derikx JP, Vreugdenhil AC, Van den Neucker AM, et al. A pilot study on the noninvasive evaluation of intestinal damage in celiac disease using I-FABP and L-FABP. J Clin Gastroenterol.. 2009;43:727–733. https://doi.org/10.1097/MCG.0b013e31819194b0.

    Article  PubMed  Google Scholar 

  8. Pelsers MMAL, Namiot Z, Kisielewski W, et al. Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clin Biochem.. 2003;36:529–535. https://doi.org/10.1016/S0009-9120%2803%2900096-1.

    Article  PubMed  CAS  Google Scholar 

  9. Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov.. 2008;7:489–503. https://doi.org/10.1038/nrd2589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Praslickova D, Torchia EC, Sugiyama MG, et al. The ileal lipid binding protein is required for efficient absorption and transport of bile acids in the distal portion of the murine small intestine. PLoS One.. 2012;7:e50810. https://doi.org/10.1371/journal.pone.0050810.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. van de Poll MC, Derikx JP, Buurman WA, et al. Liver manipulation causes hepatocyte injury and precedes systemic inflammation in patients undergoing liver resection. World J Surg.. 2007;31:2033–2038. https://doi.org/10.1007/s00268-007-9182-4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Thumser AE, Moore JB, Plant NJ. Fatty acid binding proteins: tissue-specific functions in health and disease. Curr Opin Clin Nutr Metab Care.. 2014;17:124–129. https://doi.org/10.1097/MCO.0000000000000031.

    Article  PubMed  CAS  Google Scholar 

  13. Wang G, Bonkovsky HL, de Lemos A, Burczynski FJ. Recent insights into the biological functions of liver fatty acid binding protein 1. J Lipid Res.. 2015;56:2238–2247. https://doi.org/10.1194/jlr.R056705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lin PW, Stoll BJ. Necrotising enterocolitis. Lancet.. 2006;368:1271–1283. https://doi.org/10.1016/S0140-6736(06)69525-1.

    Article  PubMed  Google Scholar 

  15. McGuire W, Anthony MY. Donor human milk versus formula for preventing necrotising enterocolitis in preterm infants: systematic review. Arch Dis Child Fetal Neonatal Ed.. 2003;88:F11–F14.

    Article  CAS  Google Scholar 

  16. Lee JS, Polin RA. Treatment and prevention of necrotizing enterocolitis. Semin Neonatol.. 2003;8:449–459. https://doi.org/10.1016/S1084-2756(03)00123-4.

    Article  PubMed  Google Scholar 

  17. Yang G, Wang Y, Jiang X. Diagnostic value of intestinal fatty-acid-binding protein in necrotizing enterocolitis: a systematic review and meta-analysis. Indian J Pediatr.. 2016;83:1410–1419. https://doi.org/10.1007/s12098-016-2144-9.

    Article  PubMed  Google Scholar 

  18. Liu Y, Jiang L-F, Zhang R-P, Zhang W-T. Clinical significance of FABP2 expression in newborns with necrotizing enterocolitis. World J Pediatr WJP.. 2016;12:159–165. https://doi.org/10.1007/s12519-015-0035-1.

    Article  PubMed  CAS  Google Scholar 

  19. Cheng S, Yu J, Zhou M, Tu Y, Lu Q. Serologic intestinal-fatty acid binding protein in necrotizing enterocolitis diagnosis: a meta-analysis. BioMed Res Int.. 2015;2015:156704. https://doi.org/10.1155/2015/156704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lin JF, Chen JM, Zuo JH, et al. Meta-analysis: fecal calprotectin for assessment of inflammatory bowel disease activity. Inflamm Bowel Dis.. 2014;20:1407–1415. https://doi.org/10.1097/MIB.0000000000000057.

    Article  PubMed  Google Scholar 

  21. Reisinger KW, Van der Zee DC, Brouwers HAA, et al. Noninvasive measurement of fecal calprotectin and serum amyloid A combined with intestinal fatty acid-binding protein in necrotizing enterocolitis. J Pediatr Surg.. 2012;47:1640–1645. https://doi.org/10.1016/j.jpedsurg.2012.02.027.

    Article  PubMed  Google Scholar 

  22. Benkoe T, Baumann S, Weninger M, et al. Comprehensive evaluation of 11 cytokines in premature infants with surgical necrotizing enterocolitis. PLoS One.. 2013;8:e58720. https://doi.org/10.1371/journal.pone.0058720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cho SX, Berger PJ, Nold-Petry CA, Nold MF. The immunological landscape in necrotising enterocolitis. Expert Rev Mol Med.. 2016;18:e12. https://doi.org/10.1017/erm.2016.13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Terrin G, Stronati L, Cucchiara S, De Curtis M. Serum markers of necrotizing enterocolitis: a systematic review. J Pediatr Gastroenterol Nutr.. 2017;65:e120–e132. https://doi.org/10.1097/MPG.0000000000001588.

    Article  PubMed  CAS  Google Scholar 

  25. Benkoe TM, Mechtler TP, Weninger M, Pones M, Rebhandl W, Kasper DC. Serum levels of interleukin-8 and gut-associated biomarkers in diagnosing necrotizing enterocolitis in preterm infants. J Pediatr Surg.. 2014;49:1446–1451. https://doi.org/10.1016/j.jpedsurg.2014.03.012.

    Article  PubMed  Google Scholar 

  26. Terrin G, Stronati L, Cucchiara S, De Curtis M. Serum markers of necrotizing enterocolitis: a systematic review. J Pediatr Gastroenterol Nutr.. 2017;65:e120–e132. https://doi.org/10.1097/MPG.0000000000001588.

    Article  PubMed  CAS  Google Scholar 

  27. Ng EW, Poon TC, Lam HS, et al. Gut-associated biomarkers L-FABP, I-FABP, and TFF3 and LIT score for diagnosis of surgical necrotizing enterocolitis in preterm infants. Ann Surg.. 2013;258:1111–1118. https://doi.org/10.1097/SLA.0b013e318288ea96.

    Article  PubMed  Google Scholar 

  28. Aydemir C, Dilli D, Oguz SS, et al. Serum intestinal fatty acid binding protein level for early diagnosis and prediction of severity of necrotizing enterocolitis. Early Hum Dev.. 2011;87:659–661. https://doi.org/10.1016/j.earlhumdev.2011.05.004.

    Article  PubMed  CAS  Google Scholar 

  29. Schurink M, Kooi EMW, Hulzebos CV, et al. Intestinal fatty acid-binding protein as a diagnostic marker for complicated and uncomplicated necrotizing enterocolitis: a prospective cohort study. PLoS One.. 2015;10:e0121336. https://doi.org/10.1371/journal.pone.0121336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Evennett NJ, Hall NJ, Pierro A, Eaton S. Urinary intestinal fatty acid-binding protein concentration predicts extent of disease in necrotizing enterocolitis. J Pediatr Surg.. 2010;45:735–740. https://doi.org/10.1016/j.jpedsurg.2009.09.024.

    Article  PubMed  Google Scholar 

  31. Heida FH, Hulscher JBF, Schurink M, et al. Intestinal fatty acid-binding protein levels in Necrotizing Enterocolitis correlate with extent of necrotic bowel: results from a multicenter study. J Pediatr Surg.. 2015;50:1115–1118. https://doi.org/10.1016/j.jpedsurg.2014.11.037.

    Article  PubMed  CAS  Google Scholar 

  32. Clair DG, Beach JM. Mesenteric Ischemia. N Engl J Med.. 2016;374:959–968. https://doi.org/10.1056/NEJMra1503884.

    Article  PubMed  CAS  Google Scholar 

  33. Cudnik MT, Darbha S, Jones J, Macedo J, Stockton SW, Hiestand BC. The diagnosis of acute mesenteric ischemia: a systematic review and meta-analysis. Acad Emerg Med.. 2013;20:1087–1100. https://doi.org/10.1111/acem.12254.

    Article  PubMed  Google Scholar 

  34. Derikx JPM, Matthijsen RA, de Bruine AP, et al. Rapid reversal of human intestinal ischemia-reperfusion induced damage by shedding of injured enterocytes and reepithelialisation. PLoS One.. 2008;3:e3428. https://doi.org/10.1371/journal.pone.0003428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Schellekens DHSM, Grootjans J, Dello SAWG, et al. Plasma intestinal fatty acid-binding protein levels correlate with morphologic epithelial intestinal damage in a human translational ischemia-reperfusion model. J Clin Gastroenterol.. 2014;48:253–260. https://doi.org/10.1097/MCG.0b013e3182a87e3e.

    Article  PubMed  CAS  Google Scholar 

  36. Cronk DR, Houseworth TP, Cuadrado DG, Herbert GS, McNutt PM, Azarow KS. Intestinal fatty acid binding protein (I-FABP) for the detection of strangulated mechanical small bowel obstruction. Curr Surg.. 2006;63:322–325. https://doi.org/10.1016/j.cursur.2006.05.006.

    Article  PubMed  Google Scholar 

  37. Kittaka H, Akimoto H, Takeshita H, et al. Usefulness of intestinal fatty acid-binding protein in predicting strangulated small bowel obstruction. PLoS One.. 2014;9:e99915. https://doi.org/10.1371/journal.pone.0099915.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Guzel M, Sozuer EM, Salt O, Ikizceli I, Akdur O, Yazici C. Value of the serum I-FABP level for diagnosing acute mesenteric ischemia. Surg Today.. 2014;44:2072–2076. https://doi.org/10.1007/s00595-013-0810-3.

    Article  PubMed  CAS  Google Scholar 

  39. Shi H, Wu B, Wan J, Liu W, Su B. The role of serum intestinal fatty acid binding protein levels and d-lactate levels in the diagnosis of acute intestinal ischemia. Clin Res Hepatol Gastroenterol.. 2015;39:373–378. https://doi.org/10.1016/j.clinre.2014.12.005.

    Article  PubMed  CAS  Google Scholar 

  40. Matsumoto S, Sekine K, Funaoka H, et al. Diagnostic performance of plasma biomarkers in patients with acute intestinal ischaemia. Br J Surg. 2014;101:232–238. https://doi.org/10.1002/bjs.9331.

    Article  PubMed  CAS  Google Scholar 

  41. Kanda T, Tsukahara A, Ueki K, et al. Diagnosis of ischemic small bowel disease by measurement of serum intestinal fatty acid-binding protein in patients with acute abdomen: a multicenter, observer-blinded validation study. J Gastroenterol.. 2011;46:492–500. https://doi.org/10.1007/s00535-011-0373-2.

    Article  PubMed  CAS  Google Scholar 

  42. van der Voort PHJ, Westra B, Wester JPJ, et al. Can serum l-lactate, d-lactate, creatine kinase and I-FABP be used as diagnostic markers in critically ill patients suspected for bowel ischemia. BMC Anesthesiol.. 2014;14:111. https://doi.org/10.1186/1471-2253-14-111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sun DL, Cen YY, Li SM, Li WM, Lu QP, Xu PY. Accuracy of the serum intestinal fatty-acid-binding protein for diagnosis of acute intestinal ischemia: a meta-analysis. Sci Rep.. 2016;6:34371. https://doi.org/10.1038/srep34371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Thuijls G, van Wijck K, Grootjans J, et al. Early diagnosis of intestinal ischemia using urinary and plasma fatty acid binding proteins. Ann Surg.. 2011;253:303–308. https://doi.org/10.1097/SLA.0b013e318207a767.

    Article  PubMed  Google Scholar 

  45. Singh P, Arora A, Strand TA, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol.. 2018;16:823–836. https://doi.org/10.1016/j.cgh.2017.06.037.

    Article  PubMed  Google Scholar 

  46. Lebwohl B, Sanders DS, Green PHR. Coeliac disease. Lancet.. 2018;391:70–81. https://doi.org/10.1016/S0140-6736(17)31796-8.

    Article  PubMed  Google Scholar 

  47. Oberhuber G, Granditsch G, Vogelsang H. The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol.. 1999;11:1185–1194.

    Article  CAS  Google Scholar 

  48. Husby S, Koletzko S, Korponay-Szabo IR, et al. European society for pediatric gastroenterology, hepatology, and nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr.. 2012;54:136–160. https://doi.org/10.1097/MPG.0b013e31821a23d0.

    Article  PubMed  CAS  Google Scholar 

  49. Tortora R, Imperatore N, Capone P, et al. The presence of anti-endomysial antibodies and the level of anti-tissue transglutaminases can be used to diagnose adult coeliac disease without duodenal biopsy. Aliment Pharmacol Ther.. 2014;40:1223–1229. https://doi.org/10.1111/apt.12970.

    Article  PubMed  CAS  Google Scholar 

  50. Efthymakis K, Serio M, Milano A, et al. Application of the biopsy-sparing ESPGHAN guidelines for celiac disease diagnosis in adults: a real-life study. Dig Dis Sci.. 2017;62:2433–2439. https://doi.org/10.1007/s10620-017-4672-1.

    Article  PubMed  CAS  Google Scholar 

  51. Adriaanse MPM, Tack GJ, Passos VL, et al. Serum I-FABP as marker for enterocyte damage in coeliac disease and its relation to villous atrophy and circulating autoantibodies. Aliment Pharmacol Ther.. 2013;37:482–490. https://doi.org/10.1111/apt.12194.

    Article  PubMed  CAS  Google Scholar 

  52. Vreugdenhil AC, Wolters VM, Adriaanse MP, et al. Additional value of serum I-FABP levels for evaluating celiac disease activity in children. Scand J Gastroenterol.. 2011;46:1435–1441. https://doi.org/10.3109/00365521.2011.627447.

    Article  PubMed  CAS  Google Scholar 

  53. Adriaanse MPM, Mubarak A, Riedl RG, et al. Progress towards non-invasive diagnosis and follow-up of celiac disease in children; a prospective multicentre study to the usefulness of plasma I-FABP. Sci Rep.. 2017;7:8671. https://doi.org/10.1038/s41598-017-07242-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Leonard MM, Weir DC, DeGroote M, et al. Value of IgA tTG in predicting mucosal recovery in children with celiac disease on a gluten-free diet. J Pediatr Gastroenterol Nutr.. 2017;64:286–291. https://doi.org/10.1097/MPG.0000000000001460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sharkey LM, Corbett G, Currie E, Lee J, Sweeney N, Woodward JM. Optimising delivery of care in coeliac disease—comparison of the benefits of repeat biopsy and serological follow-up. Aliment Pharmacol Ther.. 2013;38:1278–1291. https://doi.org/10.1111/apt.12510.

    Article  PubMed  CAS  Google Scholar 

  56. Vecsei E, Steinwendner S, Kogler H, et al. Follow-up of pediatric celiac disease: value of antibodies in predicting mucosal healing, a prospective cohort study. BMC Gastroenterol.. 2014;14:28. https://doi.org/10.1186/1471-230X-14-28.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Silvester JA, Kurada S, Szwajcer A, Kelly CP, Leffler DA, Duerksen DR. Tests for serum transglutaminase and endomysial antibodies do not detect most patients with celiac disease and persistent villous atrophy on gluten-free diets: a meta-analysis. Gastroenterology.. 2017;153:689–701. https://doi.org/10.1053/j.gastro.2017.05.015.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gidrewicz D, Trevenen CL, Lyon M, Butzner JD. Normalization time of celiac serology in children on a gluten-free diet. J Pediatr Gastroenterol Nutr.. 2017;64:362–367. https://doi.org/10.1097/MPG.0000000000001270.

    Article  PubMed  Google Scholar 

  59. Gross S, Adriaanse MP, Nijeboer P, et al. Serum intestinal-fatty acid binding protein as a biomarker for refractory celiac disease. J Gastrointest Liver Dis JGLD.. 2015;24:258–259.

    Google Scholar 

  60. Oxentenko AS, Murray JA. Celiac disease: ten things that every gastroenterologist should know. Clin Gastroenterol Hepatol.. 2015;13:1396–1404. https://doi.org/10.1016/j.cgh.2014.07.024. quiz e127-9.

    Article  PubMed  Google Scholar 

  61. Murch S, Jenkins H, Auth M, et al. Joint BSPGHAN and Coeliac UK guidelines for the diagnosis and management of coeliac disease in children. Arch Dis Child.. 2013;98:806–811. https://doi.org/10.1136/archdischild-2013-303996.

    Article  PubMed  Google Scholar 

  62. Adriaanse MPM, Leffler DA, Kelly CP, et al. Serum I-FABP detects gluten responsiveness in adult celiac disease patients on a short-term gluten challenge. Am J Gastroenterol.. 2016;111:1014–1022. https://doi.org/10.1038/ajg.2016.162.

    Article  PubMed  CAS  Google Scholar 

  63. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med.. 2009;361:2066–2078. https://doi.org/10.1056/NEJMra0804647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet.. 2012;380:1590–1605. https://doi.org/10.1016/S0140-6736(12)60026-9.

    Article  PubMed  Google Scholar 

  65. Goodhand J, Dawson R, Hefferon M, et al. Inflammatory bowel disease in young people: the case for transitional clinics. Inflamm Bowel Dis.. 2010;16:947–952. https://doi.org/10.1002/ibd.21145.

    Article  PubMed  CAS  Google Scholar 

  66. Levine A, de Bie CI, Turner D, et al. Atypical disease phenotypes in pediatric ulcerative colitis: 5-year analyses of the EUROKIDS Registry. Inflamm Bowel Dis.. 2013;19:370–377. https://doi.org/10.1002/ibd.23013.

    Article  PubMed  Google Scholar 

  67. Sarikaya M, Ergul B, Dogan Z, Filik L, Can M, Arslan L. Intestinal fatty acid binding protein (I-FABP) as a promising test for Crohn’s disease: a preliminary study. Clin Lab.. 2015;61:87–91.

    Article  CAS  Google Scholar 

  68. Al-Saffar AK, Meijer CH, Gannavarapu VR, et al. Parallel changes in harvey-bradshaw index, TNFalpha, and intestinal fatty acid binding protein in response to infliximab in crohn’s disease. Gastroenterol Res Pract.. 2017;2017:1745918. https://doi.org/10.1155/2017/1745918.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bodelier AGL, Pierik MJ, Lenaerts K, et al. Plasma intestinal fatty acid-binding protein fails to predict endoscopic disease activity in inflammatory bowel disease patients. Eur J Gastroenterol Hepatol.. 2016;28:807–813. https://doi.org/10.1097/MEG.0000000000000616.

    Article  PubMed  CAS  Google Scholar 

  70. Wiercinska-Drapalo A, Jaroszewicz J, Siwak E, Pogorzelska J, Prokopowicz D. Intestinal fatty acid binding protein (I-FABP) as a possible biomarker of ileitis in patients with ulcerative colitis. Regul Pept.. 2008;147:25–28. https://doi.org/10.1016/j.regpep.2007.12.002.

    Article  PubMed  CAS  Google Scholar 

  71. Meyers S, Sachar DB, Present DH, Janowitz HD. Olsalazine in the treatment of ulcerative colitis among patients intolerant of sulphasalazine: a prospective, randomized, placebo-controlled, double-blind, dose-ranging clinical trial. Scand J Gastroenterol Suppl.. 1988;148:29–37.

    Article  CAS  Google Scholar 

  72. Adriaanse MPM, van der Sande LJTM, van den Neucker AM, et al. Evidence for a cystic fibrosis enteropathy. PLoS One.. 2015;10:e0138062. https://doi.org/10.1371/journal.pone.0138062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Derikx JPM, Blijlevens NMA, Donnelly JP, et al. Loss of enterocyte mass is accompanied by diminished turnover of enterocytes after myeloablative therapy in haematopoietic stem-cell transplant recipients. Ann Oncol Off J Eur Soc Med Oncol.. 2009;20:337–342. https://doi.org/10.1093/annonc/mdn579.

    Article  CAS  Google Scholar 

  74. Kaufman SS, Lyden ER, Marks WH, et al. Lack of utility of intestinal fatty acid binding protein levels in predicting intestinal allograft rejection. Transplantation.. 2001;71:1058–1060.

    Article  CAS  Google Scholar 

  75. Balesaria S, Pell RJ, Abbott LJ, et al. Exploring possible mechanisms for primary bile acid malabsorption: evidence for different regulation of ileal bile acid transporter transcripts in chronic diarrhoea. Eur J Gastroenterol Hepatol.. 2008;20:413–422. https://doi.org/10.1097/MEG.0b013e3282f41b82.

    Article  PubMed  CAS  Google Scholar 

  76. Relja B, Szermutzky M, Henrich D, et al. Intestinal-FABP and liver-FABP: Novel markers for severe abdominal injury. Acad Emerg Med Off J Soc Acad Emerg Med.. 2010;17:729–735. https://doi.org/10.1111/j.1553-2712.2010.00792.x.

    Article  Google Scholar 

  77. Timmermans K, Sir O, Kox M, et al. Circulating iFABP Levels as a marker of intestinal damage in trauma patients. Shock (Augusta, Ga).. 2015;43:117–120. https://doi.org/10.1097/SHK.0000000000000284.

    Article  CAS  Google Scholar 

  78. Shi J, Zhang Y, Gu W, et al. Serum liver fatty acid binding protein levels correlate positively with obesity and insulin resistance in Chinese young adults. PLoS One.. 2012;7:e48777. https://doi.org/10.1371/journal.pone.0048777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Gollin G, Stadie D, Mayhew J, et al. Early detection of impending necrotizing enterocolitis with urinary intestinal fatty acid-binding protein. Neonatology.. 2014;106:195–200. https://doi.org/10.1159/000362497.

    Article  PubMed  CAS  Google Scholar 

  80. Coufal S, Kokesova A, Tlaskalova-Hogenova H, Snajdauf J, Rygl M, Kverka M. Urinary intestinal fatty acid-binding protein can distinguish necrotizing enterocolitis from sepsis in early stage of the disease. J Immunol Res.. 2016;2016:5727312. https://doi.org/10.1155/2016/5727312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Thuijls G, Derikx JPM, van Wijck K, et al. Non-invasive markers for early diagnosis and determination of the severity of necrotizing enterocolitis. Ann Surg.. 2010;251:1174–1180. https://doi.org/10.1097/SLA.0b013e3181d778c4.

    Article  PubMed  Google Scholar 

  82. Gregory KE, Winston AB, Yamamoto HS, et al. Urinary intestinal fatty acid binding protein predicts necrotizing enterocolitis. J Pediatr.. 2014;164:1486–1488. https://doi.org/10.1016/j.jpeds.2014.01.057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Mannoia K, Boskovic DS, Slater L, Plank MS, Angeles DM, Gollin G. Necrotizing enterocolitis is associated with neonatal intestinal injury. J Pediatr Surg.. 2011;46:81–85. https://doi.org/10.1016/j.jpedsurg.2010.09.069.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew S. Day.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Disclosure

SSCH is supported by a Freemasons Paediatric Postgraduate Scholarship.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, S.S.C., Keenan, J.I. & Day, A.S. The Role of Gastrointestinal-Related Fatty Acid-Binding Proteins as Biomarkers in Gastrointestinal Diseases. Dig Dis Sci 65, 376–390 (2020). https://doi.org/10.1007/s10620-019-05841-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05841-x

Keywords

Navigation