Skip to main content

Advertisement

Log in

Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis in Mice via a Toll-Like Receptor 4/p21-Activated Kinase 1 Cascade

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The underlying pathogenic mechanism of Fusobacterium nucleatum in the carcinogenesis of colorectal cancer has been poorly understood.

Methods

Using C57BL/6-ApcMin/+ mice, we investigated gut microbial structures with F. nucleatum, antibiotics, and Toll-like receptor 4 (TLR4) antagonist TAK-242 treatment. In addition, we measured intestinal tumor formation and the expression of TLR4, p21-activated kinase 1 (PAK1), phosphorylated-PAK1 (p-PAK1), phosphorylated-β-catenin S675 (p-β-catenin S675), and cyclin D1 in mice with different treatments.

Results

Fusobacterium nucleatum and antibiotics treatment altered gut microbial structures in mice. In addition, F. nucleatum invaded into the intestinal mucosa in large amounts but were less abundant in the feces of F. nucleatum-fed mice. The average number and size of intestinal tumors in F. nucleatum groups was significantly increased compared to control groups in ApcMin/+ mice (P < 0.05). The expression of TLR4, PAK1, p-PAK1, p-β-catenin S675, and cyclin D1 was significantly increased in F. nucleatum groups compared to the control groups (P < 0.05). Moreover, TAK-242 significantly decreased the average number and size of intestinal tumors compared to F. nucleatum groups (P < 0.05). The expression of p-PAK1, p-β-catenin S675, and cyclin D1 was also significantly decreased in the TAK-242-treated group compared to F. nucleatum groups (P < 0.05).

Conclusions

Fusobacterium nucleatum potentiates intestinal tumorigenesis in ApcMin/+ mice via a TLR4/p-PAK1/p-β-catenin S675 cascade. Fusobacterium nucleatum-induced intestinal tumorigenesis can be inhibited by TAK-242, implicating TLR4 as a potential target for the prevention and therapy of F. nucleatum-related colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–848.

    Article  CAS  PubMed  Google Scholar 

  2. Tannock GW. The search for disease-associated compositional shifts in bowel bacterial communities of humans. Trends Microbiol. 2008;16:488–495.

    Article  CAS  PubMed  Google Scholar 

  3. Jobin C. Colorectal cancer: looking for answers in the microbiota. Cancer Discov. 2013;3:384–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15:317–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Viennois E, Merlin D, Gewirtz AT, Chassaing B. Dietary emulsifier-induced low-grade inflammation promotes colon carcinogenesis. Cancer Res. 2016;77:27–40.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang X, Yang Y, Huycke MM. Microbiome-driven carcinogenesis in colorectal cancer: models and mechanisms. Free Radic Biol Med. 2016;105:3–15.

    Article  PubMed  Google Scholar 

  7. Tozun N, Vardareli E. Gut microbiome and gastrointestinal cancer: les liaisons dangereuses. J Clin Gastroenterol. 2016;50:S191–S196.

    Article  PubMed  Google Scholar 

  8. Whitmore SE, Lamont RJ. Oral bacteria and cancer. PLoS Pathog. 2014;10:e1003933.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marchesi JR, Dutilh BE, Hall N, et al. Towards the human colorectal cancer microbiome. PLoS ONE. 2011;6:e20447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu YN, Yu TC, Zhao HJ, et al. Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget. 2015;6:32013–32026.

    PubMed  PubMed Central  Google Scholar 

  13. Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu J, Chen Y, Fu X, et al. Invasive Fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int J Cancer. 2016;139:1318–1326.

    Article  CAS  PubMed  Google Scholar 

  15. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-kappa B, and up-regulating expression of microRNA-21. Gastroenterology. 2017;152(851–66):e24.

    Google Scholar 

  17. Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta BBA Mol Cell Res. 2003;1653:1–24.

    CAS  Google Scholar 

  18. Behrens J. The role of the Wnt signalling pathway in colorectal tumorigenesis. Biochem Soc Trans. 2005;33(Pt 4):672–675.

    Article  CAS  PubMed  Google Scholar 

  19. Fukata M, Shang L, Santaolalla R, et al. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis. Inflamm Bowel Dis. 2011;17:1464–1473.

    Article  PubMed  Google Scholar 

  20. Molli PR, Li DQ, Murray BW, Rayala SK, Kumar R. PAK signaling in oncogenesis. Oncogene. 2009;28:2545–2555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carter JH, Douglass LE, Deddens JA, et al. Pak-1 expression increases with progression of colorectal carcinomas to metastasis. Clin Cancer Res. 2004;10:3448–3456.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu G, Wang Y, Huang B, et al. A Rac1/PAK1 cascade controls beta-catenin activation in colon cancer cells. Oncogene. 2012;31:1001–1012.

    Article  CAS  PubMed  Google Scholar 

  23. Chen Y, Peng Y, Yu J, et al. Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget. 2017;8:31802–31814.

    PubMed  PubMed Central  Google Scholar 

  24. Naito S, von Eschenbach AC, Giavazzi R, Fidler IJ. Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Cancer Res. 1986;46:4109–4115.

    CAS  PubMed  Google Scholar 

  25. Matsunaga N, Tsuchimori N, Matsumoto T, Ii M. TAK-242 (resatorvid), a small-molecule inhibitor of toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol. 2011;79:34–41.

    Article  CAS  PubMed  Google Scholar 

  26. Farzi A, Halicka J, Mayerhofer R, Frohlich EE, Tatzl E, Holzer P. Toll-like receptor 4 contributes to the inhibitory effect of morphine on colonic motility in vitro and in vivo. Sci Rep. 2015;5:9499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Loy A, Arnold R, Tischler P, Rattei T, Wagner M, Horn M. probeCheck—a central resource for evaluating oligonucleotide probe coverage and specificity. Environ Microbiol. 2008;10:2894–2898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dammann K, Khare V, Harpain F, et al. PAK1 promotes intestinal tumor initiation. Cancer Prev Res (Phila). 2015;8:1093–1101.

    Article  CAS  Google Scholar 

  29. Guo J, Fu X, Liao H, et al. Potential use of bacterial community succession for estimating post-mortem interval as revealed by high-throughput sequencing. Sci Rep. 2016;6:24197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caporaso JG, Lauber CL, Walters WA, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Irrazabal T, Belcheva A, Girardin SE, Martin A, Philpott DJ. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell. 2014;54:309–320.

    Article  CAS  PubMed  Google Scholar 

  32. Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016;65:1973–1980.

    Article  CAS  PubMed  Google Scholar 

  33. Sena P, Saviano M, Monni S, et al. Subcellular localization of beta-catenin and APC proteins in colorectal preneoplastic and neoplastic lesions. Cancer Lett. 2006;241:203–212.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu G, Wang Y, Huang B, et al. A Rac1/PAK1 cascade controls β-catenin activation in colon cancer cells. Oncogene. 2012;31(8):1001–1012.

    Article  CAS  PubMed  Google Scholar 

  35. Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature. 2014;509:357–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abed J, Emgard JE, Zamir G, et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe. 2016;20:215–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lyra A, Forssten S, Rolny P, et al. Comparison of bacterial quantities in left and right colon biopsies and faeces. World J Gastroenterol. 2012;18:4404–4411.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Conte MP, Schippa S, Zamboni I, et al. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut. 2006;55:1760–1767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from Natural Science Foundation of the Sichuan Science and Technology Agency (No. 201665).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangsheng Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wu, J., Chen, T. et al. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis in Mice via a Toll-Like Receptor 4/p21-Activated Kinase 1 Cascade. Dig Dis Sci 63, 1210–1218 (2018). https://doi.org/10.1007/s10620-018-4999-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-4999-2

Keywords

Navigation