Skip to main content

Advertisement

Log in

Advanced Strategies for Eliminating the cccDNA of HBV

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Persistent hepatitis B virus (HBV) infection of hepatocytes is associated with a covalently closed circular DNA (cccDNA) episome. Although serologic hepatitis B surface antigen tests are negative, the presence of cccDNA is obviously increased in HBeAg-positive patients compared with that in HBeAg-negative patients, inactive carriers and patients. Moreover, trace cccDNA levels can also be found in the liver cells of patients with resolved hepatitis B infections. Therefore, clearance of cccDNA in hepatocytes could be an effective cure for HBV. In this review, we summarize the strategies that have been employed to eliminate cccDNA in recent years and discuss the future development of treatments for chronic hepatitis B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gerlich WH. Medical virology of hepatitis B: how it began and where we are now. Virol J. 2013;10:239.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Karayiannis P. Hepatitis B virus: old, new and future approaches to antiviral treatment. J Antimicrob Chemother. 2003;51:761–785.

    Article  CAS  PubMed  Google Scholar 

  3. Xu B, Lin L, Xu G, et al. Long-term lamivudine treatment achieves regression of advanced liver fibrosis/cirrhosis in patients with chronic hepatitis B. J Gastroenterol Hepatol. 2015;30:372–378.

    Article  CAS  PubMed  Google Scholar 

  4. Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Virology. 2015;479–480:672–686.

    Article  PubMed  Google Scholar 

  5. Yan H, Zhong G, Xu G, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife. 2012;1:e00049.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kock J, Rosler C, Zhang JJ, Blum HE, Nassal M, Thoma C. Generation of covalently closed circular DNA of hepatitis B viruses via intracellular recycling is regulated in a virus specific manner. PLoS Pathog. 2010;6:e1001082.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang HC, Kao JH. Persistence of hepatitis B virus covalently closed circular DNA in hepatocytes: molecular mechanisms and clinical significance. Emerg Microb Infect. 2014;3:e64.

    Article  CAS  Google Scholar 

  8. Revill P, Locarnini S. Antiviral strategies to eliminate hepatitis B virus covalently closed circular DNA (cccDNA). Curr Opin Pharmacol. 2016;30:144–150.

    Article  CAS  PubMed  Google Scholar 

  9. Liu F, Campagna M, Qi Y, et al. Alpha-interferon suppresses hepadnavirus transcription by altering epigenetic modification of cccDNA minichromosomes. PLoS Pathog. 2013;9:e1003613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li HC, Huang EY, Su PY, et al. Nuclear export and import of human hepatitis B virus capsid protein and particles. PLoS Pathog. 2010;6:e1001162.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schmitz A, Schwarz A, Foss M, et al. Nucleoporin 153 arrests the nuclear import of hepatitis B virus capsids in the nuclear basket. PLoS Pathog. 2010;6:e1000741.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zlotnick A, Venkatakrishnan B, Tan Z, Lewellyn E, Turner W, Francis S. Core protein: a pleiotropic keystone in the HBV lifecycle. Antiviral Res. 2015;121:82–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lucifora J, Protzer U. Attacking hepatitis B virus cccDNA–The holy grail to hepatitis B cure. J Hepatol. 2016;64:S41.

    Article  CAS  PubMed  Google Scholar 

  14. Schreiner S, Nassal M. A role for the host DNA damage response in hepatitis B virus cccDNA formation—and beyond? Viruses. 2017;9:125.

    Article  PubMed Central  Google Scholar 

  15. Baumert TF, Verrier ER, Nassal M, Chung RT, Zeisel MB. Host-targeting agents for treatment of hepatitis B virus infection. Curr Opin Virol. 2015;14:41.

    Article  CAS  PubMed  Google Scholar 

  16. Königer C, Wingert I, Marsmann M, Rösler C, Beck J, Nassal M. Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses. Proc Natl Acad Sci USA. 2014;111:E4244.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bock CT, Schranz P, Schroder CH, Zentgraf H. Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell. Virus Genes. 1994;8:215–229.

    Article  CAS  PubMed  Google Scholar 

  18. Pollicino T, Belloni L, Raffa G, et al. Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology. 2006;130:823–837.

    Article  CAS  PubMed  Google Scholar 

  19. Belloni L, Pollicino T, Nicola FD, et al. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. J Neurochem. 2002;83:19975–19979.

    Google Scholar 

  20. Belloni L, Allweiss L, Guerrieri F, et al. IFN-alpha inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Investig. 2012;122:529–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lutgehetmann M, Volz T, Köpke A, et al. In vivo proliferation of hepadnavirus-infected hepatocytes induces loss of covalently closed circular DNA in mice. Hepatology. 2010;52:16–24.

    Article  CAS  PubMed  Google Scholar 

  22. Guo JT, Pryce M, Wang X, Barrasa MI, Hu J, Seeger C. Conditional replication of duck hepatitis B virus in hepatoma cells. J Virol. 2003;77:1885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Summers J, Jilbert AR, Yang W, et al. Hepatocyte turnover during resolution of a transient hepadnaviral infection. Proc Natl Acad Sci USA. 2003;100:11652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reaichemiller GY, Thorpe M, Low HC, et al. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver. Virology. 2013;446:357–364.

    Article  CAS  Google Scholar 

  25. Allweiss L, Volz T, Giersch K, et al. Proliferation of Hepatitis B virus infected human hepatocytes induces suppression of viral replication and rapid cccDNA decrease in humanized mice. J Hepatol. 2013;58:S56–S57.

    Article  Google Scholar 

  26. Werle-Lapostolle B, Bowden S, Locarnini S, et al. Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology. 2004;126:1750–1758.

    Article  CAS  PubMed  Google Scholar 

  27. Blanpain C, Knoop C, Delforge ML, et al. Reactivation of hepatitis B after transplantation in patients with pre-existing anti-hepatitis B surface antigen antibodies: report on three cases and review of the literature. Transplantation. 1998;66:883–886.

    Article  CAS  PubMed  Google Scholar 

  28. Palmore TN, Shah NL, Loomba R, et al. Reactivation of hepatitis B with reappearance of hepatitis B surface antigen after chemotherapy and immunosuppression. Clin Gastroenterol Hepatol. 2009;7:1130–1137.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hung HH, Su CW, Wu JC, Lee SD. Reactivation of hepatitis B virus after transarterial chemo-embolization for hepatocellular carcinoma in one patient with negative hepatitis B surface antigen. J Hepatol. 2010;52:463–465.

    Article  PubMed  Google Scholar 

  30. Wang FS, Fan JG, Zhang Z, Gao B, Wang HY. The global burden of liver disease: the major impact of China. Hepatology. 2014;60:2099–2108.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nassal M. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut. 2015;64:1972.

    Article  CAS  PubMed  Google Scholar 

  32. Lanford RE, Guerra B, Chavez D, et al. GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology. 2013;144:1508–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Menne S, Tumas DB, Liu KH, et al. Sustained efficacy and seroconversion with the Toll-like receptor 7 agonist GS-9620 in the Woodchuck model of chronic hepatitis B. J Hepatol. 2015;62:1237–1245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xia Y, Protzer U. Control of hepatitis B virus by cytokines. Viruses. 2017;9:18.

    Article  PubMed Central  Google Scholar 

  35. Schluep T, Lickliter J, Hamilton J, et al. Safety, tolerability, and pharmacokinetics of ARC-520 injection, an RNA interference-based therapeutic for the treatment of chronic hepatitis B virus infection, in healthy volunteers. Clin Pharmacol Drug Dev. 2017;6(4):350–362.

    Article  CAS  PubMed  Google Scholar 

  36. Lok AS, Pan CQ, Han SH, et al. Randomized phase II study of GS-4774 as a therapeutic vaccine in virally suppressed patients with chronic hepatitis B. J Hepatol. 2016;65:509–516.

    Article  CAS  PubMed  Google Scholar 

  37. Mahtab MA, Akbar F, Uddin H, et al. A phase III clinical trial with a nasal vaccine containing both HBsAg and HBcAg in patients with chronic hepatitis B. J Hepatol. 2013;58:S309–S309.

    Article  Google Scholar 

  38. Betancourt AA, Delgado CA, Estevez ZC, et al. Phase I clinical trial in healthy adults of a nasal vaccine candidate containing recombinant hepatitis B surface and core antigens. Int J Infect Dis. 2007;11:394–401.

    Article  CAS  PubMed  Google Scholar 

  39. Al-Mahtab M, Akbar SM, Aguilar JC, Uddin MH, Khan MS, Rahman S. Therapeutic potential of a combined hepatitis B virus surface and core antigen vaccine in patients with chronic hepatitis B. Hepatol Int. 2013;7:981–989.

    Article  PubMed  Google Scholar 

  40. Xu DZ, Wang XY, Shen XL, et al. Results of a phase III clinical trial with an HBsAg-HBIG immunogenic complex therapeutic vaccine for chronic hepatitis B patients: experiences and findings. J Hepatol. 2013;59:450–456.

    Article  CAS  PubMed  Google Scholar 

  41. Lucifora J, Xia Y, Reisinger F, et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science. 2014;344:1221.

    Article  Google Scholar 

  42. Xia Y, Stadler D, Lucifora J, et al. Interferon-γ and tumor necrosis factor-α produced by t cells reduce the HBV persistence form, cccDNA, without cytolysis. Gastroenterology. 2016;150:194–205.

    Article  CAS  PubMed  Google Scholar 

  43. Bockmann JH, Xia Y, Stadler D, Protzer U. Type III interferons induce cccDNA degradation similar to type I interferons in HBV-infected HepaRG cells. Zeitschrift Für Gastroenterologie. 2015. https://doi.org/10.1055/s-0034-1397258.

    Google Scholar 

  44. Qiao Y, Han X, Guan G, et al. TGF-beta triggers HBV cccDNA degradation through AID-dependent deamination. FEBS Lett. 2016;590:419–427.

    Article  CAS  PubMed  Google Scholar 

  45. Fidaa B, Olivier F, Philippe G. Interleukin 6 inhibits HBV entry through NTCP down regulation. Virology. 2015;481:34–42.

    Article  Google Scholar 

  46. Hösel M, Quasdorff M, Wiegmann K, et al. Not interferon, but interleukin-6 controls early gene expression in hepatitis B virus infection. Hepatology. 2009;50:1773.

    Article  PubMed  Google Scholar 

  47. Palumbo GA, Scisciani C, Pediconi N, et al. IL6 inhibits HBV transcription by targeting the epigenetic control of the nuclear cccDNA minichromosome. PLoS ONE. 2015;10:e0142599.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Weber ND, Stone D, Sedlak RH, et al. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication. PLoS ONE. 2014;9:e97579.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bloom K, Ely A, Mussolino C, Cathomen T, Arbuthnot P. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol Ther. 2013;21:1889–1897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen J, Zhang W, Lin J, et al. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol Ther. 2014;22:303–311.

    Article  PubMed  Google Scholar 

  51. Dreyer T, Nicholson S, Ely A, Arbuthnot P, Bloom K. Improved antiviral efficacy using TALEN-mediated homology directed recombination to introduce artificial primary miRNAs into DNA of hepatitis B virus. Biochem Biophys Res Commun. 2016;478:1563–1568.

    Article  CAS  PubMed  Google Scholar 

  52. Qi Y, Gao Z, Xu G, et al. DNA polymerase kappa is a key cellular factor for the formation of covalently closed circular DNA of hepatitis B virus. PLoS Pathog. 2016;12:e1005893.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhu W, Xie K, Xu Y, et al. CRISPR/Cas9 produces anti-hepatitis B virus effect in hepatoma cells and transgenic mouse. Virus Res. 2016;217:125–132.

    Article  CAS  PubMed  Google Scholar 

  54. Lin SR, Yang HC, Kuo YT, et al. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucl Acids. 2014;3:e186.

    Article  CAS  Google Scholar 

  55. Dong C, Qu L, Wang H, Wei L, Dong Y, Xiong S. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res. 2015;118:110–117.

    Article  CAS  PubMed  Google Scholar 

  56. Moore MD, McGarvey MJ, Russell RA, Cullen BR, McClure MO. Stable inhibition of hepatitis B virus proteins by small interfering RNA expressed from viral vectors. J Gene Med. 2005;7:918–925.

    Article  CAS  PubMed  Google Scholar 

  57. Uprichard SL, Boyd B, Althage A, Chisari FV. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc Natl Acad Sci USA. 2005;102:773–778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Peng J, Zhao Y, Mai J, et al. Inhibition of hepatitis B virus replication by various RNAi constructs and their pharmacodynamic properties. J Gen Virol. 2005;86:3227–3234.

    Article  CAS  PubMed  Google Scholar 

  59. Morrissey DV, Lockridge JA, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol. 2005;23:1002–1007.

    Article  CAS  PubMed  Google Scholar 

  60. Li G, Fu L, Jiang J, Ping Y, Huang Y, Wang Y. siRNA combinations mediate greater suppression of hepatitis B virus replication in mice. Cell Biochem Biophys. 2014;69:641–647.

    Article  CAS  PubMed  Google Scholar 

  61. Wooddell CI, Rozema DB, Hossbach M, et al. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol Ther. 2013;21:973–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thongthae N, Payungporn S, Poovorawan Y, T-Thienprasert NP. A rational study for identification of highly effective siRNAs against hepatitis B virus. Exp Mol Pathol. 2014;97:120–127.

    Article  CAS  PubMed  Google Scholar 

  63. Sebestyen MG, Wong SC, Trubetskoy V, Lewis DL, Wooddell CI. Targeted in vivo delivery of siRNA and an endosome-releasing agent to hepatocytes. Methods Mol Biol. 2015;1218:163–186.

    Article  CAS  PubMed  Google Scholar 

  64. Durantel D, Zoulim F. New antiviral targets for innovative treatment concepts for hepatitis B virus and hepatitis delta virus. J Hepatol. 2016;64:S117–131.

    Article  CAS  PubMed  Google Scholar 

  65. Gish RG, Yuen MF, Chan HL, et al. Synthetic RNAi triggers and their use in chronic hepatitis B therapies with curative intent. Antiviral Res. 2015;121:97–108.

    Article  CAS  PubMed  Google Scholar 

  66. Kim JW, Lee SH, Park YS, et al. Replicative activity of hepatitis B virus is negatively associated with methylation of covalently closed circular DNA in advanced hepatitis B virus infection. Intervirology. 2011;54:316–325.

    Article  CAS  PubMed  Google Scholar 

  67. Vivekanandan P, Thomas D, Torbenson M. Hepatitis B viral DNA is methylated in liver tissues. J Viral Hepat. 2008;15:103–107.

    CAS  PubMed  Google Scholar 

  68. Zhang Y, Li C, Zhang Y, et al. Comparative analysis of CpG islands among HBV genotypes. PLoS ONE. 2013;8:e56711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang Y, Mao R, Yan R, et al. Transcription of hepatitis B virus covalently closed circular DNA is regulated by CpG methylation during chronic infection. PLoS ONE. 2014;9:e110442.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang H, Liu K, Fang BA, et al. Identification of acetyltransferase genes (HAT1 and KAT8) regulating HBV replication by RNAi screening. Cell Biosci. 2015;5:66.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lai CL, Wong D, Ip P, et al. Reduction of covalently closed circular DNA with long-term nucleos(t)ide analogue treatment in chronic hepatitis B. J Hepatol. 2017;66(2):275–281.

    Article  CAS  PubMed  Google Scholar 

  72. Cai D, Mills C, Yu W, et al. Identification of disubstituted sulfonamide compounds as specific inhibitors of hepatitis B virus covalently closed circular DNA formation. Antimicrob Agents Chemother. 2012;56:4277–4288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Volz T, Allweiss L, Ben MM, et al. The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus. J Hepatol. 2013;58:861.

    Article  CAS  PubMed  Google Scholar 

  74. Urban S, Bartenschlager R, Kubitz R, Zoulim F. Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology. 2014;147:48–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JD and JY compiled the complete draft and modification of the manuscript. XQ and YL provided critiques on the work and then finalized the article prior to submission. The corresponding author, MZ, was responsible for communication with the editor.

Corresponding author

Correspondence to Miaomiao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Ying, J., Qiu, X. et al. Advanced Strategies for Eliminating the cccDNA of HBV. Dig Dis Sci 63, 7–15 (2018). https://doi.org/10.1007/s10620-017-4842-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-017-4842-1

Keywords

Navigation