Skip to main content
Log in

miR-182 and miR-135b Mediate the Tumorigenesis and Invasiveness of Colorectal Cancer Cells via Targeting ST6GALNAC2 and PI3K/AKT Pathway

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Metastasis is a leading cause of cancer-related death including colorectal cancer (CRC). MicroRNAs are known to regulate cancer pathways and to be expressed aberrantly in cancer. Aberrant sialylation is closely associated with malignant phenotype of tumor cells, including invasiveness and metastasis.

Aim

This study aimed to investigate the association of miR-182 and miR-135b with proliferation and invasion by targeting sialyltransferase ST6GALNAC2 in CRC cells and explore the potential molecular mechanism.

Methods

We measured the levels of miR-182, miR-135b, and ST6GALNAC2 in a series of CRC cell lines and tissues using real-time PCR. Bioinformatics analysis and luciferase reporter assay were performed to test the direct binding of miR-182 and miR-135b to the target gene ST6GALNAC2. We also analyzed the possible role of miR-182/-135b on colony formation, wound healing, invasion, and tube formation.

Results

The expression of miR-182 and miR-135b was higher in tumor tissues compared to adjacent noncancerous tissues of CRC patients, as well as up-regulated in SW620 cells than in SW480 cells with different metastatic potential. By applying bioinformatics analysis and luciferase reporter assay, we identified ST6GALNAC2 as the direct target of miR-182/-135b. Furthermore, miR-182/-135b inhibited significantly ST6GALNAC2 expression, and consistently, ST6GALNAC2 mediated migration, adhesion, invasion, proliferation, and tumor angiogenesis in CRC cell lines. Additionally, PI3K/AKT signaling pathway was regulated by miR-182/135b, which was partially blocked by altered level of ST6GALNAC2 in CRC.

Conclusions

The miR-182/-135b/ST6GALNAC2/PI3K/AKT axis may serve as a predictive biomarker and a potential therapeutic target in CRC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3′UTR:

3′-untranslated region

CRC:

Colorectal cancer

miRNAs:

microRNAs

siRNA:

Small interfering RNA

STs:

Sialyltransferases

PI3K:

Phosphoinositide-3 kinase

PBS:

Phosphate-buffered saline

HUVECs:

Human umbilical vein endothelial cells

BSA:

Bovine serum albumin

RAF1:

RAF proto-oncogene serine/threonine-protein kinase

ST6GALNAC2:

GalNAc alpha-2,6-sialyltransferase 2

GCNT3:

Beta-1,6-N-acetylglucosaminyltransferase 3

GALNT7:

Polypeptide N-acetylgalactosaminyltransferase 7

FUT8:

Alpha-1,6 fucosyltransferase 8

ST3GAL5:

GMP-NeuAc: lactosylceramide alpha-2,3-sialyltransferase

ST3GAL6:

GMP-NeuAc: alpha-2,3-sialyltransferase

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.

    Article  PubMed  Google Scholar 

  2. Siegel R, DeSantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014;64:104–117.

    Article  PubMed  Google Scholar 

  3. Ma F, Xu S, Liu X, et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-[gamma]. Nat Immunol. 2011;12:861–869.

    Article  CAS  PubMed  Google Scholar 

  4. Vanhaesebroeck B, Leevers SJ, Ahmadi K, et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem. 2001;70:535–602.

    Article  CAS  PubMed  Google Scholar 

  5. Venkitachalam S, Revoredo L, Varadan V, et al. Biochemical and functional characterization of glycosylation-associated mutational landscapes in colon cancer. Sci Rep. 2016;6:23642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Munkley J, Elliott DJ. Hallmarks of glycosylation in cancer. Oncotarget. 2016;7:35478–35489.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15:540–555.

    Article  CAS  PubMed  Google Scholar 

  8. Murugaesu N, Iravani M, van Weverwijk A, et al. An in vivo functional screen identifies ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor. Cancer Discov. 2014;4:304–317.

    Article  CAS  PubMed  Google Scholar 

  9. Ferrer CM, Reginato MJ. Sticking to sugars at the metastatic site: sialyltransferase ST6GalNAc2 acts as a breast cancer metastasis suppressor. Cancer Discov. 2014;4:275–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Colangelo T, Fucci A, Votino C, et al. MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer. Neoplasia. 2013;15:1218–1231.

    Article  Google Scholar 

  11. Venkitachalam S, Guda K. Altered glycosyltransferases in colorectal cancer. Expert Rev Gastroenterol Hepatol. 2017;11:5–7.

    Article  CAS  PubMed  Google Scholar 

  12. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tu K, Zheng X, Dou C, et al. MicroRNA-130b promotes cell aggressiveness by inhibiting peroxisome proliferator-activated receptor gamma in human hepatocellular carcinoma. Int J Mol Sci. 2014;15:20486–20499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu W, Wang Z, Yang P, et al. MicroRNA-135b regulates metastasis suppressor 1 expression and promotes migration and invasion in colorectal cancer. Mol Cell Biochem. 2013;388:249–259.

    Article  PubMed  Google Scholar 

  15. Xu XM, Qian JC, Deng ZL, et al. Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with the clinical parameters of colorectal cancer. Oncol Lett. 2012;4:339–345.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cekaite L, Rantala JK, Bruun J, et al. MiR-9, -31, and -182 deregulation promote proliferation and tumor cell survival in colon cancer. Neoplasia. 2012;14:868-IN21.

    Article  Google Scholar 

  17. Bellacosa A, Kumar CC, Di Cristofano A, et al. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res. 2005;94:29–86.

    Article  CAS  PubMed  Google Scholar 

  18. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7:606–619.

    Article  CAS  PubMed  Google Scholar 

  19. Tian Y, Nan Y, Han L, et al. MicroRNA miR-451 downregulates the PI3K/AKT pathway through CAB39 in human glioma. Int J Oncol. 2012;40:1105–1112.

    CAS  PubMed  Google Scholar 

  20. Gulhati P, Bowen KA, Liu J, et al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 2011;71:3246–3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang GJ, Zhou H, Xiao HX, et al. MiR-378 is an independent prognostic factor and inhibits cell growth and invasion in colorectal cancer. BMC Cancer. 2014;14:109.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chai J, Wang S, Han D, et al. MicroRNA-455 inhibits proliferation and invasion of colorectal cancer by targeting RAF proto-oncogene serine/threonine-protein kinase. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36:1313–1321.

    Article  CAS  Google Scholar 

  23. Sachdeva M, Mito JK, Lee CL, et al. MicroRNA-182 drives metastasis of primary sarcomas by targeting multiple genes. J Clin Investig. 2014;124:4305–4319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mihelich BL, Dambal S, Lin S, et al. miR-182, of the miR-183 cluster family, is packaged in exosomes and is detected in human exosomes from serum, breast cells and prostate cells. Oncol Lett. 2016;12:1197–1203.

    PubMed  PubMed Central  Google Scholar 

  25. Wang F, Zhong S. Prognostic value of MicroRNA-182 in cancers: a meta-analysis. Dis Markers. 2015;2015:482146.

    PubMed  PubMed Central  Google Scholar 

  26. Faltejskova P, Bocanek O, Sachlova M, et al. Circulating miR-17-3p, miR-29a, miR-92a and miR-135b in serum: evidence against their usage as biomarkers in colorectal cancer. Cancer Biomarkers Sect A Dis Markers. 2012;12:199–204.

    Article  Google Scholar 

  27. Valeri N, Braconi C, Gasparini P, et al. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell. 2014;25:469–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He Y, Wang J, Wang J, et al. MicroRNA-135b regulates apoptosis and chemoresistance in colorectal cancer by targeting large tumor suppressor kinase 2. Am J Cancer Res. 2015;5:1382–1395.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, et al. The human sialyltransferase family. Biochimie. 2001;83:727–737.

    Article  CAS  PubMed  Google Scholar 

  30. Dall’Olio F, Chiricolo M. Sialyltransferases in cancer. Glycoconj J. 2001;18:841–850.

    Article  PubMed  Google Scholar 

  31. Gonzalez-Vallinas M, Molina S, Vicente G, et al. Expression of microRNA-15b and the glycosyltransferase GCNT3 correlates with antitumor efficacy of Rosemary diterpenes in colon and pancreatic cancer. PLoS One. 2014;9:e98556.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nie GH, Luo L, Duan HF, et al. GALNT7, a target of miR-494, participates in the oncogenesis of nasopharyngeal carcinoma. Tumour Biol J Int Soc Oncodev Biol Med. 2016;37:4559–4567.

    Article  CAS  Google Scholar 

  33. Bernardi C, Soffientini U, Piacente F, et al. Effects of microRNAs on fucosyltransferase 8 (FUT8) expression in hepatocarcinoma cells. PLoS ONE. 2013;8:e76540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vara JAF, Casado E, de Castro J, et al. PI3K/Akt signaling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.

    Article  CAS  Google Scholar 

  35. Pande S, Browne G, Padmanabhan S, et al. Oncogenic cooperation between PI3K/Akt signaling and transcription factor Runx2 promotes the invasive properties of metastatic breast cancer cells. J Cell Physiol. 2013;228:1784–1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Polivka J Jr, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Therap. 2014;142:164–175.

    Article  CAS  Google Scholar 

  37. Gu Y, Zhang J, Mi W, et al. Silencing of GM3 synthase suppresses lung metastasis of murine breast cancer cells. Breast Cancer Res BCR. 2008;10:R1.

    Article  PubMed  Google Scholar 

  38. Okajima T, Fukumoto S, Miyazaki H, et al. Molecular cloning of a novel alpha2,3-sialyltransferase (ST3Gal VI) that sialylates type II lactosamine structures on glycoproteins and glycolipids. J Biol Chem. 1999;274:11479–11486.

    Article  CAS  PubMed  Google Scholar 

  39. Guo Q, Guo B, Wang Y, et al. Functional analysis of alpha1,3/4-fucosyltransferase VI in human hepatocellular carcinoma cells. Biochem Biophys Res Commun. 2012;417:311–317.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from National Natural Science Foundation of China (81472014, 81772277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, L., Luo, S., Ren, X. et al. miR-182 and miR-135b Mediate the Tumorigenesis and Invasiveness of Colorectal Cancer Cells via Targeting ST6GALNAC2 and PI3K/AKT Pathway. Dig Dis Sci 62, 3447–3459 (2017). https://doi.org/10.1007/s10620-017-4755-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-017-4755-z

Keywords

Navigation