Skip to main content

Advertisement

Log in

NF-E2-Related Factor 2 Suppresses Intestinal Fibrosis by Inhibiting Reactive Oxygen Species-Dependent TGF-β1/SMADs Pathway

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

This study aimed to evaluate the antifibrotic effects of NF-E2-Related Factor 2 (Nrf2) on intestinal fibrosis. Intestinal fibrosis is a common complication of Crohn’s disease; however, its mechanism of intestinal fibrosis is largely unclear.

Methods

BALB/c mice received 2,4,6-trinitrobenzene sulfonic acid weekly via intrarectal injections to induce chronic fibrotic colitis. They also diet containing received 1% (w/w) tert-butylhydroquinone (tBHQ), which is an agonist of Nrf2. Human intestinal fibroblasts (CCD-18Co cells) were pretreated with tBHQ or si-Nrf2 followed by stimulation with transforming growth factor-β1 (TGF-β1), which transformed the cells into myofibroblasts. The main fibrosis markers such as α-smooth muscle actin, collagen I, tissue inhibitor of metalloproteinase-1, and TGF-β1/SMADs signaling pathway were detected by quantitative real-time RT-PCR, immunohistochemical analysis, and Western blot analysis. Levels of cellular reactive oxygen species (ROS) were detected by dichlorodihydrofluorescein diacetate.

Results

tBHQ suppressed the intestinal fibrosis through the TGF-β1/SMADs signaling pathway in TNBS-induced colitis and CCD-18Co cells. Moreover, Nrf2 knockdown enhanced the TGF-β1-induced differentiation of CCD-18Co cells. ROS significantly increased in TGF-β1-stimulated CCD-18Co cells. Pretreatment with H2O2, the primary component of ROS, was demonstrated to block the effect of tBHQ on reducing the expression of TGF-β1. Moreover, scavenging ROS by N-acetyl cysteine could inhibit the increasing expression of TGF-β1 promoted by Nrf2 knockdown.

Conclusions

The results suggested that Nrf2 suppressed intestinal fibrosis by inhibiting ROS/TGF-β1/SMADs pathway in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fiocchi C, Lund PK. Themes in fibrosis and gastrointestinal inflammation. Am J Physiol Gastrointest Liver Physiol. 2011;300:G677–G683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Latella G, Di Gregorio J, Flati V, Rieder F, Lawrance IC. Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol. 2015;50:53–65.

    Article  CAS  PubMed  Google Scholar 

  3. Rieder F, Fiocchi C, Rogler G. Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology. 2017;152:340–350.

    Article  PubMed  Google Scholar 

  4. Lakatos G, Hritz I, Varga MZ, et al. The impact of matrix metalloproteinases and their tissue inhibitors in inflammatory bowel diseases. Dig Dis. 2012;30:289–295.

    Article  PubMed  Google Scholar 

  5. Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004;10:549–557.

    Article  CAS  PubMed  Google Scholar 

  6. Liebler DC, Guengerich FP. Elucidating mechanisms of drug-induced toxicity. Nat Rev Drug Discov. 2005;4:410–420.

    Article  CAS  PubMed  Google Scholar 

  7. Latella G, Rogler G, Bamias G, et al. Results of the 4th scientific workshop of the ECCO(I): pathophysiology of intestinal fibrosis in IBD. J Crohns Colitis. 2014;8:1147–1165.

    Article  PubMed  Google Scholar 

  8. Krstic J, Trivanovic D, Mojsilovic S, Santibanez JF. Transforming growth factor-beta and oxidative stress interplay: implications in tumorigenesis and cancer progression. Oxid Med Cell Longev. 2015;2015:654594.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ge A, Ma Y, Liu YN, et al. Diosmetin prevents TGF-beta1-induced epithelial-mesenchymal transition via ROS/MAPK signaling pathways. Life Sci. 2016;153:1–8.

    Article  CAS  PubMed  Google Scholar 

  10. Kashima S, Fujiya M, Konishi H, et al. Polyphosphate, an active molecule derived from probiotic Lactobacillus brevis, improves the fibrosis in murine colitis. Transl Res. 2015;166:163–175.

    Article  CAS  PubMed  Google Scholar 

  11. Meng XM, Tang PM, Li J, Lan HY. TGF-beta/Smad signaling in renal fibrosis. Front Physiol. 2015;6:82.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jin W, Ni H, Dai Y, et al. Effects of tert-butylhydroquinone on intestinal inflammatory response and apoptosis following traumatic brain injury in mice. Mediators Inflamm. 2010;2010:502564.

    Article  PubMed  Google Scholar 

  13. Tao Q, Wang B, Zheng Y, Jiang X, Pan Z, Ren J. Vitamin D prevents the intestinal fibrosis via induction of vitamin D receptor and inhibition of transforming growth factor-beta1/Smad3 pathway. Dig Dis Sci. 2015;60:868–875.

    Article  CAS  PubMed  Google Scholar 

  14. Shih AY, Imbeault S, Barakauskas V, et al. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem. 2005;280:22925–22936.

    Article  CAS  PubMed  Google Scholar 

  15. Videla S, Vilaseca J, Medina C, et al. Selective inhibition of phosphodiesterase-4 ameliorates chronic colitis and prevents intestinal fibrosis. J Pharmacol Exp Ther. 2006;316:940–945.

    Article  CAS  PubMed  Google Scholar 

  16. Aminzadeh MA, Nicholas SB, Norris KC, Vaziri ND. Role of impaired Nrf2 activation in the pathogenesis of oxidative stress and inflammation in chronic tubulo-interstitial nephropathy. Nephrol Dial Transplant. 2013;28:2038–2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kruse ML, Friedrich M, Arlt A, et al. Colonic lamina propria inflammatory cells from patients with IBD induce the nuclear Factor-E2 Related Factor-2 thereby leading to greater proteasome activity and apoptosis protection in human colonocytes. Inflamm Bowel Dis. 2016;22:2593–2606.

    Article  PubMed  Google Scholar 

  18. Takagi T, Naito Y, Mizushima K, et al. Increased intestinal expression of heme oxygenase-1 and its localization in patients with ulcerative colitis. J Gastroenterol Hepatol. 2008;23:S229–S233.

    Article  CAS  PubMed  Google Scholar 

  19. Wagner AE, Will O, Sturm C, Lipinski S, Rosenstiel P, Rimbach G. DSS-induced acute colitis in C57BL/6 mice is mitigated by sulforaphane pre-treatment. J Nutr Biochem. 2013;24:2085–2091.

    Article  CAS  PubMed  Google Scholar 

  20. Pandurangan AK, Mohebali N, Norhaizan ME, Looi CY. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice. Drug Des Devel Ther. 2015;9:3923–3934.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang KP, Zhang C, Zhang SG, et al. 3-(3-pyridylmethylidene)-2-indolinone reduces the severity of colonic injury in a murine model of experimental colitis. Oxid Med Cell Longev. 2015;2015:959253.

    PubMed  PubMed Central  Google Scholar 

  22. Khor TO, Huang MT, Kwon KH, Chan JY, Reddy BS, Kong AN. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res. 2006;66:11580–11584.

    Article  CAS  PubMed  Google Scholar 

  23. Koo YC, Pyo MC, Nam MH, Hong CO, Yang SY, Lee KW. Chebulic acid prevents hepatic fibrosis induced by advanced glycation end-products in LX-2 cell by modulating Nrf2 translocation via ERK pathway. Toxicol In Vitro. 2016;34:8–15.

    Article  CAS  PubMed  Google Scholar 

  24. Divya T, Dineshbabu V, Soumyakrishnan S, Sureshkumar A, Sudhandiran G. Celastrol enhances Nrf2 mediated antioxidant enzymes and exhibits anti-fibrotic effect through regulation of collagen production against bleomycin-induced pulmonary fibrosis. Chem Biol Interact. 2016;246:52–62.

    Article  CAS  PubMed  Google Scholar 

  25. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18:1028–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Robert S, Gicquel T, Bodin A, Lagente V, Boichot E. Characterization of the MMP/TIMP imbalance and collagen production induced by IL-1β or TNF-α release from human hepatic stellate cells. PLoS ONE. 2016;11:e0153118.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhu MY, Lu YM, Ou YX, Zhang HZ, Chen WX. Dynamic progress of 2,4,6-trinitrobenzene sulfonic acid induced chronic colitis and fibrosis in rat model. J Dig Dis. 2012;13:421–429.

    Article  CAS  PubMed  Google Scholar 

  28. Melchior C, Loeuillard E, Marion-Letellier R, et al. Magnetic resonance colonography for fibrosis assessment in rats with chronic colitis. PLoS ONE. 2014;9:e100921.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Di Sabatino A, Jackson CL, Pickard KM, et al. Transforming growth factor beta signalling and matrix metalloproteinases in the mucosa overlying Crohn’s disease strictures. Gut. 2009;58:777–789.

    Article  PubMed  Google Scholar 

  30. McKaig BC, McWilliams D, Watson SA, Mahida YR. Expression and regulation of tissue inhibitor of metalloproteinase-1 and matrix metalloproteinases by intestinal myofibroblasts in inflammatory bowel disease. Am J Pathol. 2003;162:1355–1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Breynaert C, de Bruyn M, Arijs I, et al. Genetic deletion of tissue inhibitor of metalloproteinase-1/TIMP-1 alters inflammation and attenuates fibrosis in dextran sodium sulphate-induced murine models of colitis. J Crohns Colitis. 2016;10:1336–1350.

    Article  PubMed  Google Scholar 

  32. Rieder F, Kessler S, Sans M, Fiocchi C. Animal models of intestinal fibrosis: new tools for the understanding of pathogenesis and therapy of human disease. Am J Physiol Gastrointest Liver Physiol. 2012;303:G786–G801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vallance BA, Gunawan MI, Hewlett B, et al. TGF-beta1 gene transfer to the mouse colon leads to intestinal fibrosis. Am J Physiol Gastrointest Liver Physiol. 2005;289:G116–G128.

    Article  CAS  PubMed  Google Scholar 

  34. Latella G, Vetuschi A, Sferra R, et al. Smad3 loss confers resistance to the development of trinitrobenzene sulfonic acid-induced colorectal fibrosis. Eur J Clin Invest. 2009;39:145–156.

    Article  CAS  PubMed  Google Scholar 

  35. Speca S, Giusti I, Rieder F, Latella G. Cellular and molecular mechanisms of intestinal fibrosis. World J Gastroenterol. 2012;18:3635–3661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang G, Yeung CK, Wong WY, et al. Liver fibrosis can be induced by high salt intake through excess reactive oxygen species (ROS) production. J Agric Food Chem. 2016;64:1610–1617.

    Article  CAS  PubMed  Google Scholar 

  37. Maimaiti R, Zhang Y, Pan K, Wubuli M, Andersson R. Frequent coinfection with hepatitis among HIV-positive patients in Urumqi China. J Int Assoc Provid AIDS Care. 2013;12:58–61.

    Article  PubMed  Google Scholar 

  38. Shen Y, Miao NJ, Xu JL, et al. N-acetylcysteine alleviates angiotensin II-mediated renal fibrosis in mouse obstructed kidneys. Acta Pharmacol Sin. 2016;37:637–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jain M, Rivera S, Monclus EA, et al. Mitochondrial reactive oxygen species regulate transforming growth factor-beta signaling. J Biol Chem. 2013;288:770–777.

    Article  CAS  PubMed  Google Scholar 

  40. Yang Y, Kim B, Park YK, Koo SI, Lee JY. Astaxanthin prevents TGFbeta1-induced pro-fibrogenic gene expression by inhibiting Smad3 activation in hepatic stellate cells. Biochim Biophys Acta. 2015;1850:178–185.

    Article  CAS  PubMed  Google Scholar 

  41. Nie H, Xue X, Liu G, et al. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase. Free Radic Res. 2016;50:1200–1213.

    Article  CAS  PubMed  Google Scholar 

  42. Liu RM, Desai LP. Reciprocal regulation of TGF-beta and reactive oxygen species: a perverse cycle for fibrosis. Redox Biol. 2015;6:565–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu H, Li GN, Xie J, et al. Resveratrol ameliorates myocardial fibrosis by inhibiting ROS/ERK/TGF-beta/periostin pathway in STZ-induced diabetic mice. BMC Cardiovasc Disord. 2016;16:5.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Manoury B, Nenan S, Leclerc O, et al. The absence of reactive oxygen species production protects mice against bleomycin-induced pulmonary fibrosis. Respir Res. 2005;6:11.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Experimental center of Shengjing Hospital for technical assistance.

Funding

Funding was provided by Science and Technology Program of Liaoning Province (Grant No. 2013225303).

Author information

Authors and Affiliations

Authors

Contributions

CZ and YG conceived and designed the experiments; YG, DP and JY performed the experiments; YS, YG and DW analyzed the data and prepared figures; YG, YT and WL wrote the paper; CZ revised the manuscript for important intellectual content; all authors approval of the final version to be published.

Corresponding author

Correspondence to Changqing Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The founding sponsors had no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Ethical approval

All animal experiments were approved by the institutional care and animal use committee of the China Medical University and conducted in accordance with the National Institute of Health (NIH) Guide for the Care and Use of Laboratory Animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Y., Tan, Y., Liu, W. et al. NF-E2-Related Factor 2 Suppresses Intestinal Fibrosis by Inhibiting Reactive Oxygen Species-Dependent TGF-β1/SMADs Pathway. Dig Dis Sci 63, 366–380 (2018). https://doi.org/10.1007/s10620-017-4710-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-017-4710-z

Keywords

Navigation