Skip to main content

Advertisement

Log in

Resveratrol Protects Oxidative Stress-Induced Intestinal Epithelial Barrier Dysfunction by Upregulating Heme Oxygenase-1 Expression

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background/Aim

Obstructive jaundice (OJ) is frequently complicated by infections and has been associated with increased bacterial translocation, intestinal epithelial hyperpermeability, and oxidative stress, but the mechanism remains unclear. The potential effect of resveratrol (Res) on modifying intestinal epithelial dysfunction was evaluated both in vitro and in vivo.

Methods

Caco-2 cells (in vitro) and male Wistar rats (n = 60; in vivo) were used to evaluate the role of Res on intestinal epithelial dysfunction. Hydrogen peroxide was used to induce oxidative stress in the Caco-2 cells. In bile duct-ligated group, OJ was successfully established on Day 7 after bile duct ligation, whereas sham-operated and vehicle-treated rats served as controls. Western blot and RT-qPCR were performed to analyze TJ proteins expression in epithelium isolated from rat intestine.

Results

Intestinal hyperpermeability was associated with decreased expression and phosphorylation of occludin and zonula occluden (ZO-1), but increased oxidation in Caco-2 cells and the intestinal epithelium. Res treatment increased the epithelial expression and phosphorylation of occludin and ZO-1 in a concentration-dependent manner. Moreover, Res which protected Caco-2 cells from H2O2-induced oxidative damage clearly reduced malondialdehyde level and intracellular reactive oxygen species accumulation, but increased the expression levels of superoxide dismutase and heme oxygenase-1 (HO-1). Further studies showed that Res also inhibited H2O2-induced protein kinase C activity and p38 phosphorylation. Interestingly, these effects of Res were abolished by the HO-1 inhibitor zinc protoporphyrin or knockdown of HO-1 by siRNA.

Conclusions

Res protected gut barrier function possibly by initiating HO-1-dependent signaling which is essential for common expression of key tight junction proteins. It also provides a rationale to develop Res clinical applications of intestinal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fang Y, Gurusamy KS, Wang Q, et al. Pre-operative biliary drainage for obstructive jaundice. Cochrane DB Syst Rev. 2012;9:CD005444.

    Google Scholar 

  2. Brandoni A, Hazelhoff MH, Bulacio RP, et al. Expression and function of renal and hepatic organic anion transporters in extrahepatic cholestasis. World J Gastroenterol. 2012;18:6387–6397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yilmaz EE, Arikanoğlu Z, Turkoğlu A, et al. The protective effects of pomegranate on liver and remote organs caused by experimental obstructive jaundice model. Eur Rev Med Pharmacol. 2016;20:767–772.

    CAS  Google Scholar 

  4. Zhou YK, Qin HL, Zhang M, et al. Effects of Lactobacillus plantarum on gut barrier function in experimental obstructive jaundice. World J Gastroenterol. 2012;18:3977–3991.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Assimakopoulos SF, Scopa CD, Vagianos CE. Pathophysiology of increased intestinal permeability in obstructive jaundice. World J Gastroenterol. 2007;13:6458–6464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang N, Yu H, Ma J, et al. Evidence for tight junction protein disruption in intestinal mucosa of malignant obstructive jaundice patients. Scand J Gastroenterol. 2010;45:191–199.

    Article  CAS  PubMed  Google Scholar 

  7. Chen J, Dong JT, Li XJ, et al. Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats. World J Gastroenterol. 2015;21:484.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Assimakopoulos SF, Vagianos CE, Patsoukis N, et al. Evidence for intestinal oxidative stress in obstructive jaundice-induced gut barrier dysfunction in rats. Acta Physiol Scand. 2004;180:177–185.

    Article  CAS  PubMed  Google Scholar 

  9. Karatepe O, Acet E, Battal M, et al. Effects of glutamine and curcumin on bacterial translocation in jaundiced rats. World J Gastroenterol. 2010;16:4313–4320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aydin S, Aytac E, Uzun H, et al. Effects of Ganoderma lucidum on obstructive jaundice-induced oxidative stress. Asian J Surg. 2010;33:173–180.

    Article  PubMed  Google Scholar 

  11. Kapan M, Onder A, Yuksel H, et al. The effects of erythropoietin on bacterial translocation and inflammatory response in an experimental intestinal obstruction model in rats/Uticaj Eritropoetina Na Bakterijsku Translokaciju I Inflamatorni Odgovor U Eksperimentalnom Modelu Intestinalne Opstrukcije Kod Pacova. J Med Biochem. 2013;32:39–46.

    Article  CAS  Google Scholar 

  12. Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol. 2002;3:1129–1134.

    Article  CAS  PubMed  Google Scholar 

  13. Davey M, Stals E, Panis B, et al. High-throughput determination of malondialdehyde in plant tissues. Anal Biochem. 2005;347:201–207.

    Article  CAS  PubMed  Google Scholar 

  14. Del Rio D, Stewart A, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005;15:316–328.

    Article  PubMed  Google Scholar 

  15. Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002;53:1331–1341.

    Article  CAS  PubMed  Google Scholar 

  16. González-Mariscal L, Domínguez-Calderón A, Raya-Sandino A, et al. Tight junctions and the regulation of gene expression. Semin Cell Dev Biol. 2014;36:213–223.

    Article  PubMed  Google Scholar 

  17. Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci. 2013;70:631–659.

    Article  CAS  PubMed  Google Scholar 

  18. Elkouby-Naor L, Ben-Yosef T. Functions of claudin tight junction proteins and their complex interactions in various physiological systems. Int Rev Cell Mol Biol. 2010;279:1–32.

    Article  CAS  PubMed  Google Scholar 

  19. Sawada N. Tight junction-related human diseases. Pathol Int. 2013;63:1–12.

    Article  CAS  PubMed  Google Scholar 

  20. Vikstrtjm E, Bui L, Konradsson P, et al. The junctional integrity of epithelial cells is modulated by Pseudomonas aeruginosa quorum sensing molecule through phosphorylation dependent mechanisms. Exp Cell Res. 2009;315:313–326.

    Article  Google Scholar 

  21. Raj P, Zieroth S, Netticadan T. An overview of the efficacy of resveratrol in the management of ischemic heart disease. Ann NY Acad Sci. 2015;1348:55–67.

    Article  CAS  PubMed  Google Scholar 

  22. Chong E, Chang SL, Hsiao YW, et al. Resveratrol, a red wine antioxidant, reduces atrial fibrillation susceptibility in the failing heart by PI3K/AKT/eNOS signaling pathway activation. Heart Rhythm. 2015;12:1046–1056.

    Article  PubMed  Google Scholar 

  23. Origassa CS, Camara NO. Cytoprotective role of heme oxygenase-1 and heme degradation derived end products in liver injury. World J Hepatol. 2013;5:541–549.

    PubMed  PubMed Central  Google Scholar 

  24. Otterbein LE, Choi AMK. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1029–L1037.

    CAS  PubMed  Google Scholar 

  25. Liu B, Qian JM. Cytoprotective role of heme oxygenase-1 in liver ischemia reperfusion injury. Int J Clin Exp Med. 2015;8:19867–19873.

    PubMed  PubMed Central  Google Scholar 

  26. Quincozes-Santos A, Bobermin LD, Latini A, et al. Resveratrol protects C6 astrocyte cell line against hydrogen peroxide-induced oxidative stress through heme oxygenase 1. PLoS One. 2013;8:e64372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ungvari Z, Orosz Z, Rivera A, et al. Resveratrol increases vascular oxidative stress resistance. Am J Physiol Heart Circ Physiol. 2007;292:H2417–H2424.

    Article  CAS  PubMed  Google Scholar 

  28. Yet SF, Perrella MA, Layne MD, et al. Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null rat. J Clin Invest. 1999;103:R23–R29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhuang H, Kim YS, Koehler RC, Doré S. Potential mechanism by which resveratrol, a red wine constituent, protects neurons. Ann NY Acad Sci. 2003;993:276–286.

    Article  CAS  PubMed  Google Scholar 

  30. Inci K, Edebo A, Olbe L, Casselbrant A. Expression of protease-activated- receptor 2 (PAR-2) in human esophageal mucosa. Scand J Gastroenterol. 2009;44:664–671.

    Article  CAS  PubMed  Google Scholar 

  31. Ma J, Li F, Liu L, et al. Raf kinase inhibitor protein inhibits cell proliferation but promotes cell migration in rat hepatic stellate cells. Liver Int. 2009;29:567–574.

    Article  CAS  PubMed  Google Scholar 

  32. Hossain Z, Hirata T. Molecular mechanism of intestinal permeability: interaction at tight junctions. Mol BioSyst. 2008;4:1181–1185.

    Article  CAS  PubMed  Google Scholar 

  33. Liu Z, Shi C, Yang J, et al. Molecular regulation of the intestinal epithelial barrier: implication in human diseases. Front Biol Sci. 2011;16:2903–2909.

    CAS  Google Scholar 

  34. Deitch EA. Gut-origin sepsis: evolution of a concept. Surgeon. 2012;10:350–356.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jones C, Badger SA, Regan M, et al. Modulation of gut barrier function in patients with obstructive jaundice using probiotic LP299v. Eur J Gastroenterol Hepatol. 2013;25:1424–1430.

    Article  PubMed  Google Scholar 

  36. Fu Q, Wang H, Xia M, et al. The effect of phytic acid on tight junctions in the human intestinal Caco-2 cell line and its mechanism. Eur J Pharm Sci. 2015;80:1–8.

    Article  CAS  PubMed  Google Scholar 

  37. Chen S, Zhu J, Zuo S, et al. Protective effect of hydrogen sulfide on TNF-α and IFN-γ-induced injury of intestinal epithelial barrier function in Caco-2 monolayers. Inflamm Res. 2015;64:789–797.

    Article  CAS  PubMed  Google Scholar 

  38. Morampudi V, Conlin VS, Dalwadi U, et al. Vasoactive intestinal peptide prevents PKCε-induced intestinal epithelial barrier disruption during EPEC infection. Am J Physiol Gastrointest Liver Physiol. 2015;308:G389–G402.

    Article  CAS  PubMed  Google Scholar 

  39. Sheth P, Basuroy S, Li C, et al. Role of phosphatidylinositol 3-kinase in oxidative stress-induced disruption of tight junctions. J Biol Chem. 2003;278:49239–49245.

    Article  CAS  PubMed  Google Scholar 

  40. Basuroy S, Sheth P, Kuppuswamy D, et al. Expression of kinase-inactive c-Src delays oxidative stressinduced disassembly and accelerates calcium-mediated reassembly of tight junctions in the Caco-2 cell monolayer. J Biol Chem. 2003;278:11916–11924.

    Article  CAS  PubMed  Google Scholar 

  41. Rao RK, Basuroy S, Rao VU, et al. Tyrosine phosphorylation and dissociation of occludin, ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. J Biol Chem. 2002;368:471–481.

    CAS  Google Scholar 

  42. Rao RK, Baker RD, Baker SS, et al. Oxidant-induced disruption of intestinal epithelial barrier function role of protein tyrosine phosphorylation. Am J Physiol. 1997;273:G812–G823.

    CAS  PubMed  Google Scholar 

  43. Rao RK, Li L, Baker RD, et al. Glutathione oxidation and PTPase inhibition by hydrogen peroxide in Caco-2 cell monolayer. Am J Physiol Gastrointest Liver Physiol. 2000;279:G332–G340.

    CAS  PubMed  Google Scholar 

  44. Jazwa A, Cuadrado A. Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Curr Drug Targets. 2010;11:1517–1531.

    Article  CAS  PubMed  Google Scholar 

  45. Otterbein LE, Soares MP, Yamashita K, Bach FH. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 2003;24:449–455.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu X, Fan WG, Li DP, et al. Heme oxygenase-1 system and gastrointestinal inflammation: a short review. World J Gastroenterol. 2011;17:4283–4288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Durante W. Protective role of heme oxygenase-1 against inflammation in atherosclerosis. Front Biol Sci. 2011;16:2372–2388.

    CAS  Google Scholar 

  48. Ben-Ari Z, Issan Y, Katz Y, et al. Induction of heme oxygenase-1 protects mouse liver from apoptotic ischemia/reperfusion injury. Apoptosis. 2013;18:547–555.

    Article  CAS  PubMed  Google Scholar 

  49. Gu J, Song ZP, Gui DM, et al. Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in lymphoma nude mice by heme oxygenase-1 induction. Cardiovasc Toxicol. 2012;12:341–349.

    Article  CAS  PubMed  Google Scholar 

  50. Kwon KJ, Kim JN, Kim MK, et al. Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: a possible role in neuroprotection. J Pineal Res. 2011;50:110–123.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the National Natural Science Foundation of China (No. 81170411) and the Health Department Foundation of Hebei Province, China (No. H2014206177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Qing Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Han, Q., Wang, G. et al. Resveratrol Protects Oxidative Stress-Induced Intestinal Epithelial Barrier Dysfunction by Upregulating Heme Oxygenase-1 Expression. Dig Dis Sci 61, 2522–2534 (2016). https://doi.org/10.1007/s10620-016-4184-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4184-4

Keywords

Navigation