Skip to main content

Advertisement

Log in

Comparison of Adipose-Derived and Bone Marrow Mesenchymal Stromal Cells in a Murine Model of Crohn’s Disease

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Mesenchymal stromal cells (MSCs) have been used in the treatment of Crohn’s disease (CD) because of the immunomodulatory ability.

Aim

The aim of this study was to investigate the therapeutic effect of adipose-derived MSCs (AD-MSCs) and to compare the therapeutic effect of AD-MSCs with that of bone marrow MSCs (BM-MSCs) in a murine model of CD.

Methods

Murine colitis model of CD was created by trinitrobenzene sulfonic acid (TNBS). Twelve hours after treatment with TNBS, the mouse model was injected with MSCs intraperitoneally. Real-time polymerase chain reaction and immunohistochemistry staining were used to measure the expression levels of inflammatory cytokines in colonic tissues to investigate the therapeutic effect of AD-MSCs. The ten-day survival was recorded after infusion of MSCs.

Results

Intraperitoneal injection of MSCs alleviated the clinical and histopathologic severity of intestinal inflammation, and improved the survival of the TNBS-induced mouse model of CD. AD-MSCs could effectively increase the expression of interleukin-10 and reduce the secretion of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-12, and vascular endothelial growth factor. The mucosal injury was repaired by AD-MSCs. These effects were comparable between AD-MSCs and BM-MSCs.

Conclusions

The therapeutic effect appears similar between AD-MSCs and BM-MSCs in treating CD. AD-MSCs may be a potential alternative of cell-based therapy for CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Crohn BB, Ginzburg L, Oppenheimer GD. Regional ileitis: a pathologic and clinical entity. 1932. Mt Sinai J Med. 2000;67:263–268.

    CAS  PubMed  Google Scholar 

  2. Shaffer VO, Wexner SD. Surgical management of Crohn’s disease. Langenbecks Arch Surg. 2013;398:13–27.

    Article  PubMed  Google Scholar 

  3. Rutgeerts P, Geboes K, Vantrappen G, Beyls J, Kerremans R, Hiele M. Predictability of the postoperative course of Crohn’s disease. Gastroenterology. 1990;99:956–963.

    Article  CAS  PubMed  Google Scholar 

  4. Fornaro R, Frascio M, Stabilini C, et al. Crohn’s disease surgery: problems of postoperative recurrence. Chir Ital. 2008;60:761–781.

    PubMed  Google Scholar 

  5. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3:521–533.

    Article  CAS  PubMed  Google Scholar 

  6. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–429.

    Article  CAS  PubMed  Google Scholar 

  7. Taupin P. OTI-010 osiris therapeutics/JCR pharmaceuticals. Curr Opin Investig Drugs. 2006;7:473–481.

    CAS  PubMed  Google Scholar 

  8. Ciccocioppo R, Bernardo ME, Sgarella A, et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut. 2011;60:788–798.

    Article  PubMed  Google Scholar 

  9. Duijvestein M, Vos AC, Roelofs H, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut. 2010;59:1662–1669.

    Article  PubMed  Google Scholar 

  10. Galipeau J. The mesenchymal stromal cells dilemma–does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy. 2013;15:2–8.

    Article  PubMed  Google Scholar 

  11. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–228.

    Article  CAS  PubMed  Google Scholar 

  12. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25:2739–2749.

    Article  CAS  PubMed  Google Scholar 

  13. Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol. 2005;129:118–129.

    Article  PubMed  Google Scholar 

  14. Yanez R, Lamana ML, Garcia-Castro J, Colmenero I, Ramirez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. 2006;24:2582–2591.

    Article  CAS  PubMed  Google Scholar 

  15. Bassi G, Pacelli L, Carusone R, Zanoncello J, Krampera M. Adipose-derived stromal cells (ASCs). Transfus Apher Sci. 2012;47:193–198.

    Article  PubMed  Google Scholar 

  16. Lee RH, Kim B, Choi I, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 2004;14:311–324.

    Article  CAS  PubMed  Google Scholar 

  17. De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101–109.

    Article  PubMed  Google Scholar 

  18. Garcia-Olmo D, Garcia-Arranz M, Garcia LG, et al. Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal Crohn’s disease: a new cell-based therapy. Int J Colorectal Dis. 2003;18:451–454.

    Article  PubMed  Google Scholar 

  19. Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum. 2005;48:1416–1423.

    Article  PubMed  Google Scholar 

  20. Garcia-Olmo D, Herreros D, Pascual I, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum. 2009;52:79–86.

    Article  PubMed  Google Scholar 

  21. Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc. 2009;4:102–106.

    Article  CAS  PubMed  Google Scholar 

  22. Sung JH, Yang HM, Park JB, et al. Isolation and characterization of mouse mesenchymal stem cells. Transplant Proc. 2008;40:2649–2654.

    Article  CAS  PubMed  Google Scholar 

  23. Taha MF, Hedayati V. Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells. Tissue Cell. 2010;42:211–216.

    Article  CAS  PubMed  Google Scholar 

  24. Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy. 2005;7:393–395.

    Article  CAS  PubMed  Google Scholar 

  25. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–1301.

    Article  CAS  PubMed  Google Scholar 

  26. Penick KJ, Solchaga LA, Welter JF. High-throughput aggregate culture system to assess the chondrogenic potential of mesenchymal stem cells. Biotechniques. 2005;39:687–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Duijvestein M, Wildenberg ME, Welling MM, et al. Pretreatment with interferon-gamma enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis. Stem Cells. 2011;29:1549–1558.

    Article  CAS  PubMed  Google Scholar 

  28. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147.

    Article  CAS  PubMed  Google Scholar 

  29. Da SML, Sand TT, Harman RJ, Lennon DP, Caplan AI. MSC frequency correlates with blood vessel density in equine adipose tissue. Tissue Eng Part A. 2009;15:221–229.

    Article  Google Scholar 

  30. Hoogduijn MJ, Betjes MG, Baan CC. Mesenchymal stromal cells for organ transplantation: different sources and unique characteristics? Curr Opin Organ Transplant. 2014;19:41–46.

    Article  CAS  PubMed  Google Scholar 

  31. Lee SY, Kim W, Lim C, Chung SG. Treatment of lateral epicondylosis by using allogeneic adipose-derived mesenchymal stem cells: a pilot study. Stem Cells. 2015;33:2995–3005.

    Article  CAS  PubMed  Google Scholar 

  32. Cho YB, Park KJ, Yoon SN, et al. Long-term results of adipose-derived stem cell therapy for the treatment of Crohn’s fistula. Stem Cells Transl Med. 2015;4:532–537.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Toyserkani NM, Christensen ML, Sheikh SP, Sorensen JA. Adipose-derived stem cells: new treatment for wound healing? Ann Plast Surg. 2015;75:117–123.

    Article  CAS  PubMed  Google Scholar 

  34. Danisovic L, Varga I, Polak S, et al. Comparison of in vitro chondrogenic potential of human mesenchymal stem cells derived from bone marrow and adipose tissue. Gen Physiol Biophys. 2009;28:56–62.

    Article  CAS  PubMed  Google Scholar 

  35. Elman JS, Li M, Wang F, Gimble JM, Parekkadan B. A comparison of adipose and bone marrow-derived mesenchymal stromal cell secreted factors in the treatment of systemic inflammation. J Inflamm (Lond). 2014;11:1.

    Article  Google Scholar 

  36. Ertas G, Ural E, Ural D, et al. Comparative analysis of apoptotic resistance of mesenchymal stem cells isolated from human bone marrow and adipose tissue. Sci World J. 2012;2012:105698.

    Article  Google Scholar 

  37. Rasmussen JG, Frobert O, Holst-Hansen C, et al. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model. Cell Transplant. 2014;23:195–206.

    Article  PubMed  Google Scholar 

  38. Huang JI, Kazmi N, Durbhakula MM, Hering TM, Yoo JU, Johnstone B. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res. 2005;23:1383–1389.

    Article  CAS  PubMed  Google Scholar 

  39. Napoli C, Williams-Ignarro S, de Nigris F, et al. Beneficial effects of concurrent autologous bone marrow cell therapy and metabolic intervention in ischemia-induced angiogenesis in the mouse hindlimb. Proc Natl Acad Sci USA. 2005;102:17202–17206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rodrigo SF, van Ramshorst J, Hoogslag GE, et al. Intramyocardial injection of autologous bone marrow-derived ex vivo expanded mesenchymal stem cells in acute myocardial infarction patients is feasible and safe up to 5 years of follow-up. J Cardiovasc Transl Res. 2013;6:816–825.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Iyer SS, Rojas M. Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies. Exp Opin Biol Ther. 2008;8:569–581.

    Article  CAS  Google Scholar 

  42. Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 2009;136:978–989.

    Article  CAS  PubMed  Google Scholar 

  43. Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut. 2009;58:929–939.

    Article  CAS  PubMed  Google Scholar 

  44. Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15:42–49.

    Article  CAS  PubMed  Google Scholar 

  45. Bernardo ME, Locatelli F, Fibbe WE. Mesenchymal stromal cells. Ann N Y Acad Sci. 2009;1176:101–117.

    Article  CAS  PubMed  Google Scholar 

  46. Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006;24:150–154.

    Article  CAS  PubMed  Google Scholar 

  48. Ivanova-Todorova E, Bochev I, Mourdjeva M, et al. Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunol Lett. 2009;126:37–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by Guangdong Provincial Scientific Technology Foundation (#B2012149), National Natural Science Foundation of China (#81200332, #81300367, and #81570596), Pearl River S&T Nova Program of Guangzhou (#2014J2200040), Science and Technology Planning Project of Guangdong Province (#2015B020229001), and the Fundamental Research Funds for the Central Universities (#15ykjc06e).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Lian.

Ethics declarations

Conflict of interest

None.

Additional information

Minghao Xie and Huabo Qin have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Qin, H., Luo, Q. et al. Comparison of Adipose-Derived and Bone Marrow Mesenchymal Stromal Cells in a Murine Model of Crohn’s Disease. Dig Dis Sci 62, 115–123 (2017). https://doi.org/10.1007/s10620-016-4166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4166-6

Keywords

Navigation