Skip to main content
Log in

Expression and Clinical Role of Cdc5L as a Novel Cell Cycle Protein in Hepatocellular Carcinoma

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Cell division cycle 5-like (Cdc5L), as a pre-mRNA splicing factor, is a regulator of mitotic progression. Previous study found that deletion of endogenous Cdc5L decreases the cell viability via dramatic mitotic arrest, while the role of Cdc5L in cancer biology remains under debate.

Aims

To investigate the involvement of Cdc5L in the progression of hepatocellular carcinoma (HCC).

Methods

In this study, the expression of Cdc5L was evaluated by Western blot in 8 paired fresh HCC tissues and immunohistochemistry on 116 paraffin-embedded slices. We treated HCC cells by nocodazole to analyze the role of Cdc5L in mitotic progress. To determine whether Cdc5L could regulate the proliferation of HCC cells, we increased endogenous Cdc5L and analyzed the proliferation of HCC cells using Western blot, CCK8, flow cytometry assays, and colony formation analyses. Furthermore, Cdc5L-siRNA oligos were used to confirm that Cdc5L plays an essential role in HCC development.

Results

Cdc5L was highly expressed in HCC and significantly associated with multiple clinicopathological factors, including AJCC stage, tumor size, and Ki-67. Besides, univariate and multivariate survival analyses demonstrated that high Cdc5L expression was an independent prognostic factor for HCC patients’ poor survival. Overexpression of Cdc5L favors cell cycle progress of HCC cells, while downregulation of Cdc5L results in cell cycle arrest at G2/M phase and reduced cell proliferation of HCC cells.

Conclusions

Our findings suggested that Cdc5L could play an important role in the tumorigenesis of HCC and thus be a potential therapeutical target to prevent HCC progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He L, Zhou X, Qu C, et al. Musashi2 predicts poor prognosis and invasion in hepatocellular carcinoma by driving epithelial-mesenchymal transition. J Cell Mol Med. 2014;18:49–58.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology. 2004;127:S5–S16.

    Article  PubMed  Google Scholar 

  3. Coleman WB. Mechanisms of human hepatocarcinogenesis. Curr Mol Med. 2003;3:573–588.

    Article  PubMed  CAS  Google Scholar 

  4. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–166.

    Article  PubMed  CAS  Google Scholar 

  5. Burns CG, Ohi R, Krainer AR, Gould KL. Evidence that Myb-related CDC5 proteins are required for pre-mRNA splicing. Proc Natl Acad Sci USA. 1999;96:13789–13794.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Ajuh P, Kuster B, Panov K, Zomerdijk JC, Mann M, Lamond AI. Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO J. 2000;19:6569–6581.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Ajuh P, Sleeman J, Chusainow J, Lamond AI. A direct interaction between the carboxyl-terminal region of CDC5L and the WD40 domain of PLRG1 is essential for pre-mRNA splicing. J Biol Chem. 2001;276:42370–42381.

    Article  PubMed  CAS  Google Scholar 

  8. Ajuh P, Lamond AI. Identification of peptide inhibitors of pre-mRNA splicing derived from the essential interaction domains of CDC5L and PLRG1. Nucleic Acids Res. 2003;31:6104–6116.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Grote M, Wolf E, Will CL, et al. Molecular architecture of the human Prp19/CDC5L complex. Mol Cell Biol. 2010;30:2105–2119.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Wan L, Huang J. The PSO4 protein complex associates with replication protein A (RPA) and modulates the activation of ataxia telangiectasia-mutated and Rad3-related (ATR). J Biol Chem. 2014;289:6619–6626.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Mu R, Wang YB, Wu M, et al. Depletion of pre-mRNA splicing factor Cdc5L inhibits mitotic progression and triggers mitotic catastrophe. Cell Death Dis. 2014;5:e1151.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Huang GJ, Zhang ZQ, Yao LH, Chen AJ, Xu CX. [Screening of new binding partners of CIKS with yeast two-hybrid system] Sheng wu gong cheng xue bao. Chin J Biotechnol. 2003;19:190–194.

    CAS  Google Scholar 

  13. Boudrez A, Beullens M, Groenen P, et al. NIPP1-mediated interaction of protein phosphatase-1 with CDC5L, a regulator of pre-mRNA splicing and mitotic entry. J Biol Chem. 2000;275:25411–25417.

    Article  PubMed  CAS  Google Scholar 

  14. Schwartz GK, Shah MA. Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol. 2005;23:9408–9421.

    Article  PubMed  CAS  Google Scholar 

  15. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015;14:130–146.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Sadikovic B, Thorner P, Chilton-Macneill S, et al. Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy. BMC Cancer. 2010;10:202.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Martin JW, Chilton-MacNeill S, Koti M, van Wijnen AJ, Squire JA, Zielenska M. Digital expression profiling identifies RUNX2, CDC5L, MDM2, RECQL4, and CDK4 as potential predictive biomarkers for neo-adjuvant chemotherapy response in paediatric osteosarcoma. PloS ONE. 2014;9:e95843.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Kreppel M, Amir Manawi NN, Scheer M, et al. Prognostic quality of the Union Internationale Contre le Cancer/American Joint Committee on Cancer TNM classification, 7th edition, for cancer of the maxillary sinus. Head Neck. 2015;37:400–406.

    Article  PubMed  Google Scholar 

  19. Wan C, Hou S, Ni R, et al. MIF4G domain containing protein regulates cell cycle and hepatic carcinogenesis by antagonizing CDK2-dependent p27 stability. Oncogene. 2015;34:237–245.

    Article  PubMed  CAS  Google Scholar 

  20. Wan C, Liu J, Nie X, et al. 2, 3, 7, 8-Tetrachlorodibenzo-P-dioxin (TCDD) induces premature senescence in human and rodent neuronal cells via ROS-dependent mechanisms. PloS ONE. 2014;9:e89811.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Poli A, Ramazzotti G, Matteucci A, et al. A novel DAG-dependent mechanism links PKCa and Cyclin B1 regulating cell cycle progression. Oncotarget. 2014;5:11526–11540.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Gavet O, Pines J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell. 2010;18:533–543.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Murray AW. Recycling the cell cycle: cyclins revisited. Cell. 2004;116:221–234.

    Article  PubMed  CAS  Google Scholar 

  24. Moiseeva TN, Bottrill A, Melino G, Barlev NA. DNA damage-induced ubiquitylation of proteasome controls its proteolytic activity. Oncotarget. 2013;4:1338–1348.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Clute P, Pines J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol. 1999;1:82–87.

    Article  PubMed  CAS  Google Scholar 

  26. Sun H, Gao Y, Lu K, et al. Overexpression of Klotho suppresses liver cancer progression and induces cell apoptosis by negatively regulating wnt/β-catenin signaling pathway. World J Surg Oncol. 2015;13:307.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Goh KL, Razlan H, Hartono JL, et al. Liver cancer in Malaysia: epidemiology and clinical presentation in a multiracial Asian population. J Dig Dis. 2015;16:152–158.

    Article  PubMed  Google Scholar 

  28. Liu WT, Jing YY, Yu GF, et al. Toll like receptor 4 facilitates invasion and migration as a cancer stem cell marker in hepatocellular carcinoma. Cancer Lett. 2015;358:136–143.

    Article  PubMed  CAS  Google Scholar 

  29. Chen RC, Yi PP, Zhou RR, et al. The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines. Mol Cell Biochem. 2014;390:271–280.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Rao CV, Kurkjian CD, Yamada HY. Mitosis-targeting natural products for cancer prevention and therapy. Curr Drug Target. 2012;13:1820–1830.

    Article  CAS  Google Scholar 

  31. Manchado E, Guillamot M, Malumbres M. Killing cells by targeting mitosis. Cell Death Differ. 2012;19:369–377.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 81472272) and Natural Youth Foundation of China (No. 81401985).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Runzhou Ni or Tao Tao.

Ethics declarations

Conflict of interest

None.

Additional information

Huiyuan Qiu and Xiubing Zhang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, H., Zhang, X., Ni, W. et al. Expression and Clinical Role of Cdc5L as a Novel Cell Cycle Protein in Hepatocellular Carcinoma. Dig Dis Sci 61, 795–805 (2016). https://doi.org/10.1007/s10620-015-3937-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3937-9

Keywords

Navigation