Skip to main content

Advertisement

Log in

Interactions of Hepatitis B Virus Infection with Nonalcoholic Fatty Liver Disease: Possible Mechanisms and Clinical Impact

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Hepatitis B virus (HBV) infection is a major etiology of chronic liver disease worldwide. In the past decade, nonalcoholic fatty liver disease (NAFLD) has emerged as a common liver disorder in general population. Accordingly, the patient number of chronic hepatitis B (CHB) concomitant with NAFLD grows rapidly. The present article reviewed the recent studies aiming to explore the relationship between CHB and NAFLD from different aspects, including the relevant pathogenesis of CHB and NAFLD, the intracellular molecular mechanisms overlaying HBV infection and hepatic steatosis, and the observational studies with animal models and clinical cohorts for analyzing the coincidence of the two diseases. It is concluded that although numerous cross-links have been suggested between the molecular pathways in HBV infection and NAFLD pathogenesis, regarding whether HBV infection can substantially interfere with the occurrence of NAFLD or vice versa in the patients, there is still far from a conclusive agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACC:

Acetyl coenzyme A acid enzyme

AKT:

Protein kinase B

BMI:

Body mass index

C/EBP:

CCAAT/enhancer binding protein

CHB:

Chronic hepatitis B

CHC:

Chronic hepatitis C

CREB:

Cyclic AMP response element-binding protein

CYP7A1:

Cholesterol 7α-hydroxylase

ECHS:

Enoyl-coenzyme A hydratase

FAS:

Fatty acid synthase

FXR:

Farnesoid X receptor

GFP:

Green fluorescent protein

GSK:

Glycogen synthase kinase

HBcAg:

Hepatitis B virus core antigen

HBeAg:

Hepatitis B virus e antigen

HBs:

Hepatitis B virus surface protein

HBsAg:

Hepatitis B virus surface antigen

HBs-Tg mice:

Hepatitis B virus surface antigen transgenic mice

HBV:

Hepatitis B virus

HBx:

Hepatitis B virus X protein

HCC:

Hepatocellular carcinoma

HFD:

High-fat diet

HNF:

Hepatic nuclear factor

IR:

Insulin resistance

LXR:

Liver X receptor

LXRE:

LXR response element

MS:

Metabolic syndrome

mTOR:

Mammalian target of rapamycin

mTORC1:

Mammalian target of rapamycin complex 1

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NTCP:

Sodium taurocholate cotransporting polypeptide

PGC-1a:

Peroxisome proliferator-activated receptor gamma coactivator-1a

PI3K:

Phosphatidylinositol-3-kinase

PNPLA:

Patatin-like phospholipase domain-containing protein A

PPAR:

Peroxisome proliferator-activated receptor

R&D:

Research and development

RXR:

Retinoid X receptor

SRE:

Sterol regulatory element

SREBP:

Sterol regulatory element-binding protein

TF:

Transcription factor

TNF:

Tumor necrosis factor

TNFR1:

Tumor necrosis factor receptor 1

References

  1. McMahon BJ. The natural history of chronic hepatitis B virus infection. Hepatology. 2009;49:S45–S55.

    Article  CAS  PubMed  Google Scholar 

  2. WHO Media Centre. Hepatitis B. Available at: http://www.who.int/mediacentre/factsheets/fs204/en/. Accessed March, 2015.

  3. Ekstedt M, Franzen LE, Mathiesen UL, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;44:865–873.

    Article  CAS  PubMed  Google Scholar 

  4. Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10:330–344.

    Article  CAS  PubMed  Google Scholar 

  5. Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34:274–285.

    Article  CAS  PubMed  Google Scholar 

  6. Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013;10:686–690.

    Article  CAS  PubMed  Google Scholar 

  7. Pais R, Rusu E, Zilisteanu D, et al. Prevalence of steatosis and insulin resistance in patients with chronic hepatitis B compared with chronic hepatitis C and nonalcoholic fatty liver disease. Eur J Intern Med. 2015;26:30–36.

    Article  CAS  PubMed  Google Scholar 

  8. Wang MM, Wang GS, Shen F, Chen GY, Pan Q, Fan JG. Hepatic steatosis is highly prevalent in hepatitis B patients and negatively associated with virological factors. Dig Dis Sci. 2014;59:2571–2579.

    Article  CAS  PubMed  Google Scholar 

  9. Wong VW, Wong GL, Chu WC, et al. Hepatitis B virus infection and fatty liver in the general population. J Hepatol. 2012;56:533–540.

    Article  PubMed  Google Scholar 

  10. Rastogi A, Sakhuja P, Kumar A, et al. Steatosis in chronic hepatitis B: prevalence and correlation with biochemical, histologic, viral, and metabolic parameters. Indian J Pathol Microbiol. 2011;54:454–459.

    Article  PubMed  Google Scholar 

  11. Minakari M, Molaei M, Shalmani HM, et al. Liver steatosis in patients with chronic hepatitis B infection: host and viral risk factors. Eur J Gastroenterol Hepatol. 2009;21:512–516.

    Article  PubMed  Google Scholar 

  12. Wang CC, Hsu CS, Liu CJ, Kao JH, Chen DS. Association of chronic hepatitis B virus infection with insulin resistance and hepatic steatosis. J Gastroenterol Hepatol. 2008;23:779–782.

    Article  PubMed  CAS  Google Scholar 

  13. Kim K, Kim KH, Kim HH, Cheong J. Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRalpha. Biochem J. 2008;416:219–230.

    Article  CAS  PubMed  Google Scholar 

  14. Na TY, Shin YK, Roh KJ, et al. Liver X receptor mediates hepatitis B virus X protein-induced lipogenesis in hepatitis B virus-associated hepatocellular carcinoma. Hepatology. 2009;49:1122–1131.

    Article  CAS  PubMed  Google Scholar 

  15. Kim JY, Song EH, Lee HJ, et al. HBx-induced hepatic steatosis and apoptosis are regulated by TNFR1- and NF-kappaB-dependent pathways. J Mol Biol. 2010;397:917–931.

    Article  CAS  PubMed  Google Scholar 

  16. Kim KH, Shin HJ, Kim K, et al. Hepatitis B virus X protein induces hepatic steatosis via transcriptional activation of SREBP1 and PPARgamma. Gastroenterology. 2007;132:1955–1967.

    Article  CAS  PubMed  Google Scholar 

  17. Cindoruk M, Karakan T, Unal S. Hepatic steatosis has no impact on the outcome of treatment in patients with chronic hepatitis B infection. J Clin Gastroenterol. 2007;41:513–517.

    Article  PubMed  Google Scholar 

  18. Peng D, Han Y, Ding H, Wei L. Hepatic steatosis in chronic hepatitis B patients is associated with metabolic factors more than viral factors. J Gastroenterol Hepatol. 2008;23:1082–1088.

    Article  CAS  PubMed  Google Scholar 

  19. Shi JP, Fan JG, Wu R, et al. Prevalence and risk factors of hepatic steatosis and its impact on liver injury in Chinese patients with chronic hepatitis B infection. J Gastroenterol Hepatol. 2008;23:1419–1425.

    Article  PubMed  Google Scholar 

  20. Liu CJ, Kao JH. Global perspective on the natural history of chronic hepatitis B: role of hepatitis B virus genotypes A to J. Semin Liver Dis. 2013;33:97–102.

    Article  PubMed  CAS  Google Scholar 

  21. Lucifora J, Xia Y, Reisinger F, et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science. 2014;343:1221–1228.

    Article  CAS  PubMed  Google Scholar 

  22. Yan H, Zhong G, Xu G, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife. 2012;1:e00049.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Schieck A, Schulze A, Gahler C, et al. Hepatitis B virus hepatotropism is mediated by specific receptor recognition in the liver and not restricted to susceptible hosts. Hepatology. 2013;58:43–53.

    Article  CAS  PubMed  Google Scholar 

  24. Urban S, Schulze A, Dandri M, Petersen J. The replication cycle of hepatitis B virus. J Hepatol. 2010;52:282–284.

    Article  PubMed  Google Scholar 

  25. Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol. 2006;1:23–61.

    Article  CAS  PubMed  Google Scholar 

  26. Arzumanyan A, Reis HM, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 2013;13:123–135.

    Article  CAS  PubMed  Google Scholar 

  27. Liaw YF, Kao JH, Piratvisuth T, et al. Asian-Pacific consensus statement on the management of chronic hepatitis B: a 2012 update. Hepatol Int. 2012;6:531–561.

    Article  PubMed  Google Scholar 

  28. Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science. 2011;332:1519–1523.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol. 2010;5:145–171.

    Article  CAS  PubMed  Google Scholar 

  30. Perry RJ, Samuel VT, Petersen KF, Shulman GI. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature. 2014;510:84–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Tariq Z, Green CJ, Hodson L. Are oxidative stress mechanisms the common denominator in the progression from hepatic steatosis towards nonalcoholic steatohepatitis (NASH)? Liver Int. 2014;34:e180–e190.

    Article  CAS  PubMed  Google Scholar 

  32. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114:842–845.

    Article  CAS  PubMed  Google Scholar 

  33. Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52:1836–1846.

    Article  CAS  PubMed  Google Scholar 

  34. Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49:1877–1887.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang C, Xie C, Li F, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest. 2015;125:386–402.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Wang GX, Zhao XY, Meng ZX, et al. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat Med. 2014;20:1436–1443.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Handa P, Maliken BD, Nelson JE, et al. Reduced adiponectin signaling due to weight gain results in nonalcoholic steatohepatitis through impaired mitochondrial biogenesis. Hepatology. 2014;60:133–145.

    Article  CAS  PubMed  Google Scholar 

  38. Lake AD, Novak P, Hardwick RN, et al. The adaptive endoplasmic reticulum stress response to lipotoxicity in progressive human nonalcoholic fatty liver disease. Toxicol Sci. 2014;137:26–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Fujita N, Takei Y. Iron overload in nonalcoholic steatohepatitis. Adv Clin Chem. 2011;55:105–132.

    Article  CAS  PubMed  Google Scholar 

  40. Meli R, Raso GM, Calignano A. Role of innate immune response in nonalcoholic fatty liver disease: metabolic complications and therapeutic tools. Front Immunol. 2014;5:177.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Rhee EJ, Kim MK, Park SE, et al. High serum vitamin D levels reduce the risk for nonalcoholic fatty liver disease in healthy men independent of metabolic syndrome. Endocr J. 2013;60:743–752.

    Article  CAS  PubMed  Google Scholar 

  42. Moschen AR, Kaser S, Tilg H. Nonalcoholic steatohepatitis: a microbiota-driven disease. Trends Endocrinol Metab. 2013;24:537–545.

    Article  CAS  PubMed  Google Scholar 

  43. Lonardo A, Adinolfi LE, Loria P, Carulli N, Ruggiero G, Day CP. Steatosis and hepatitis C virus: mechanisms and significance for hepatic and extrahepatic disease. Gastroenterology. 2004;126:586–597.

    Article  CAS  PubMed  Google Scholar 

  44. Mehta SH, Brancati FL, Sulkowski MS, Strathdee SA, Szklo M, Thomas DL. Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States. Ann Intern Med. 2000;133:592–599.

    Article  CAS  PubMed  Google Scholar 

  45. Stepanova M, Lam B, Younossi Y, Srishord MK, Younossi ZM. Association of hepatitis C with insulin resistance and type 2 diabetes in US general population: the impact of the epidemic of obesity. J Viral Hepat. 2012;19:341–345.

    Article  CAS  PubMed  Google Scholar 

  46. Ruhl CE, Menke A, Cowie CC, Everhart JE. Relationship of hepatitis C virus infection with diabetes in the U.S. population. Hepatology. 2014;60:1139–1149.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Cusi K. The relationship between hepatitis C virus infection and diabetes: time for a divorce? Hepatology. 2014;60:1121–1123.

    Article  PubMed  Google Scholar 

  48. Vigano M, Valenti L, Lampertico P, et al. Patatin-like phospholipase domain-containing 3 I148M affects liver steatosis in patients with chronic hepatitis B. Hepatology. 2013;58:1245–1252.

    Article  CAS  PubMed  Google Scholar 

  49. Bar-Yishay I, Shaul Y, Shlomai A. Hepatocyte metabolic signalling pathways and regulation of hepatitis B virus expression. Liver Int. 2011;31:282–290.

    Article  CAS  PubMed  Google Scholar 

  50. Fung J, Yuen MF, Lai CL. The role of steatosis in HBsAg seroclearance for patients with chronic hepatitis B infection: fact or fiction? Dig Dis Sci. 2013;58:20–22.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Lopez-Cabrera M, Letovsky J, Hu KQ, Siddiqui A. Multiple liver-specific factors bind to the hepatitis B virus core/pregenomic promoter: trans-activation and repression by CCAAT/enhancer binding protein. Proc Natl Acad Sci USA. 1990;87:5069–5073.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Kim BK, Lim SO, Park YG. Requirement of the cyclic adenosine monophosphate response element-binding protein for hepatitis B virus replication. Hepatology. 2008;48:361–373.

    Article  CAS  PubMed  Google Scholar 

  53. Raney AK, Zhang P, McLachlan A. Regulation of transcription from the hepatitis B virus large surface antigen promoter by hepatocyte nuclear factor 3. J Virol. 1995;69:3265–3272.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Yu X, Mertz JE. Distinct modes of regulation of transcription of hepatitis B virus by the nuclear receptors HNF4alpha and COUP-TF1. J Virol. 2003;77:2489–2499.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Ramiere C, Scholtes C, Diaz O, et al. Transactivation of the hepatitis B virus core promoter by the nuclear receptor FXRalpha. J Virol. 2008;82:10832–10840.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Reese VC, Oropeza CE, McLachlan A. Independent activation of hepatitis B virus biosynthesis by retinoids, peroxisome proliferators, and bile acids. J Virol. 2013;87:991–997.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Tang H, McLachlan A. Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. Proc Natl Acad Sci USA. 2001;98:1841–1846.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Shlomai A, Paran N, Shaul Y. PGC-1alpha controls hepatitis B virus through nutritional signals. Proc Natl Acad Sci USA. 2006;103:16003–16008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Ning BF, Ding J, Liu J, et al. Hepatocyte nuclear factor 4alpha-nuclear factor-kappaB feedback circuit modulates liver cancer progression. Hepatology. 2014;60:1607–1619.

    Article  CAS  PubMed  Google Scholar 

  60. Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology. 2008;48:1632–1643.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Bouchard MJ, Schneider RJ. The enigmatic X gene of hepatitis B virus. J Virol. 2004;78:12725–12734.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Forgues M, Difilippantonio MJ, Linke SP, et al. Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol Cell Biol. 2003;23:5282–5292.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Kim K, Kim KH, Cheong J. Hepatitis B virus X protein impairs hepatic insulin signaling through degradation of IRS1 and induction of SOCS3. PLoS One. 2010;5:e8649.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov. 2014;13:433–444.

    Article  CAS  PubMed  Google Scholar 

  65. Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 2004;86:839–848.

    Article  CAS  PubMed  Google Scholar 

  66. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–1657.

    Article  CAS  PubMed  Google Scholar 

  67. Buchkovich NJ, Yu Y, Zampieri CA, Alwine JC. The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K-Akt-mTOR signalling pathway. Nat Rev Microbiol. 2008;6:266–275.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Brown AJ. Viral hepatitis and fatty liver disease: how an unwelcome guest makes pate of the host. Biochem J. 2008;416:e15–e17.

    Article  CAS  PubMed  Google Scholar 

  69. Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1:a000034.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1:a001651.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Wang XA, Zhang R, She ZG, et al. Interferon regulatory factor 3 constrains IKKbeta/NF-kappaB signaling to alleviate hepatic steatosis and insulin resistance. Hepatology. 2014;59:870–885.

    Article  CAS  PubMed  Google Scholar 

  72. Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11:183–190.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Bruss V, Ganem D. The role of envelope proteins in hepatitis B virus assembly. Proc Natl Acad Sci USA. 1991;88:1059–1063.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Chan HL, Wong VW, Tse AM, et al. Serum hepatitis B surface antigen quantitation can reflect hepatitis B virus in the liver and predict treatment response. Clin Gastroenterol Hepatol. 2007;5:1462–1468.

    Article  CAS  PubMed  Google Scholar 

  75. Martinot-Peignoux M, Asselah T, Marcellin P. HBsAg quantification to optimize treatment monitoring in chronic hepatitis B patients. Liver Int. 2015;35:82–90.

    Article  CAS  PubMed  Google Scholar 

  76. Peters H, Buck N, Wanders R, et al. ECHS1 mutations in Leigh disease: a new inborn error of metabolism affecting valine metabolism. Brain. 2014;137:2903–2908.

    Article  PubMed  Google Scholar 

  77. Zhang X, Yang J, Guo Y, et al. Functional proteomic analysis of nonalcoholic fatty liver disease in rat models: enoyl-coenzyme a hydratase down-regulation exacerbates hepatic steatosis. Hepatology. 2010;51:1190–1199.

    Article  CAS  PubMed  Google Scholar 

  78. Xiao CX, Yang XN, Huang QW, et al. ECHS1 acts as a novel HBsAg-binding protein enhancing apoptosis through the mitochondrial pathway in HepG2 cells. Cancer Lett. 2013;330:67–73.

    Article  CAS  PubMed  Google Scholar 

  79. Geier A. Hepatitis B virus: the “metabolovirus” highjacks cholesterol and bile acid metabolism. Hepatology. 2014;60:1458–1460.

    Article  CAS  PubMed  Google Scholar 

  80. Oehler N, Volz T, Bhadra OD, et al. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism. Hepatology. 2014;60:1483–1493.

    Article  CAS  PubMed  Google Scholar 

  81. Sugiyama M, Tanaka Y, Sakamoto T, et al. Early dynamics of hepatitis B virus in chimeric mice carrying human hepatocytes monoinfected or coinfected with genotype G. Hepatology. 2007;45:929–937.

    Article  CAS  PubMed  Google Scholar 

  82. Dandri M, Burda MR, Torok E, et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology. 2001;33:981–988.

    Article  CAS  PubMed  Google Scholar 

  83. Mercer DF, Schiller DE, Elliott JF, et al. Hepatitis C virus replication in mice with chimeric human livers. Nat Med. 2001;7:927–933.

    Article  CAS  PubMed  Google Scholar 

  84. Dorner M, Horwitz JA, Robbins JB, et al. A genetically humanized mouse model for hepatitis C virus infection. Nature. 2011;474:208–211.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Bissig KD, Wieland SF, Tran P, et al. Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. J Clin Invest. 2010;120:924–930.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Ploss A, Khetani SR, Jones CT, et al. Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures. Proc Natl Acad Sci USA. 2010;107:3141–3145.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Shlomai A, Schwartz RE, Ramanan V, et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci USA. 2014;111:12193–12198.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Griffith LG, Wells A, Stolz DB. Engineering liver. Hepatology. 2014;60:1426–1434.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Dandri M, Lutgehetmann M, Petersen J. Experimental models and therapeutic approaches for HBV. Semin Immunopathol. 2013;35:7–21.

    Article  CAS  PubMed  Google Scholar 

  90. Wang Y, Cai LQ, Nugraha B, Gao Y, Leo HL. Current hydrogel solutions for repairing and regeneration of complex tissues. Curr Med Chem. 2014;21:2480–2496.

    Article  CAS  PubMed  Google Scholar 

  91. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Charras G, Sahai E. Physical influences of the extracellular environment on cell migration. Nat Rev Mol Cell Biol. 2014;15:813–824.

    Article  CAS  PubMed  Google Scholar 

  93. Wang Y, Toh YC, Li Q, et al. Mechanical compaction directly modulates the dynamics of bile canaliculi formation. Integr Biol (Camb). 2013;5:390–401.

    Article  CAS  Google Scholar 

  94. Kucera O, Cervinkova Z. Experimental models of nonalcoholic fatty liver disease in rats. World J Gastroenterol. 2014;20:8364–8376.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Mann JP, Brewter O, Harries P, Wall C, Bell L, Armstrong MJ. Animal models of nonalcoholic steatohepatitis: an extensive systematic review. J Hepatol. 2015;62:S705.

    Article  Google Scholar 

  96. Asgharpour A, Bedossa P, Hoshida Y, et al. A diet-induced mouse model of nonalcoholic fatty liver disease with progression to advanced fibrosis and hepatocellular carcinoma with a gene expression signature mimicking human disease. J Hepatol. 2015;62:S710.

    Article  Google Scholar 

  97. Cazanave S, Vincent R, Srivastava J, et al. FXR resistance characterizes human and mouse model of NASH. J Hepatol. 2015;62:S703.

    Article  Google Scholar 

  98. Zhang Z, Pan Q, Duan XY, et al. Fatty liver reduces hepatitis B virus replication in a genotype B hepatitis B virus transgenic mice model. J Gastroenterol Hepatol. 2012;27:1858–1864.

    Article  CAS  PubMed  Google Scholar 

  99. Fu MM, Sun R, Tian ZG, Wei HM. Increased susceptibility to experimental steatohepatitis induced by methionine-choline deficiency in HBs-Tg mice. Hepatobiliary Pancreat Dis Int. 2010;9:513–519.

    PubMed  Google Scholar 

  100. Shieh YS, Chang YS, Hong JR. et al Increase of hepatic fat accumulation by liver specific expression of Hepatitis B virus X protein in zebrafish. Biochim Biophys Acta. 1801;2010:721–730.

    Google Scholar 

  101. Yang F, Yan S, He Y, et al. Expression of hepatitis B virus proteins in transgenic mice alters lipid metabolism and induces oxidative stress in the liver. J Hepatol. 2008;48:12–19.

    Article  CAS  PubMed  Google Scholar 

  102. Leandro G, Mangia A, Hui J, et al. Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data. Gastroenterology. 2006;130:1636–1642.

    Article  PubMed  Google Scholar 

  103. Chu CM, Lin DY, Liaw YF. Clinical and virological characteristics post HBsAg seroclearance in hepatitis B virus carriers with hepatic steatosis versus those without. Dig Dis Sci. 2013;58:275–281.

    Article  CAS  PubMed  Google Scholar 

  104. Yun JW, Cho YK, Park JH, et al. Hepatic steatosis and fibrosis in young men with treatment-naive chronic hepatitis B. Liver Int. 2009;29:878–883.

    Article  CAS  PubMed  Google Scholar 

  105. Tsochatzis E, Papatheodoridis GV, Manesis EK, Chrysanthos N, Kafiri G, Archimandritis AJ. Hepatic steatosis in chronic hepatitis B develops due to host metabolic factors: a comparative approach with genotype 1 chronic hepatitis C. Dig Liver Dis. 2007;39:936–942.

    Article  CAS  PubMed  Google Scholar 

  106. Thomopoulos KC, Arvaniti V, Tsamantas AC, et al. Prevalence of liver steatosis in patients with chronic hepatitis B: a study of associated factors and of relationship with fibrosis. Eur J Gastroenterol Hepatol. 2006;18:233–237.

    Article  PubMed  Google Scholar 

  107. Bondini S, Kallman J, Wheeler A, et al. Impact of nonalcoholic fatty liver disease on chronic hepatitis B. Liver Int. 2007;27:607–611.

    Article  PubMed  Google Scholar 

  108. Altlparmak E, Koklu S, Yalinkilic M, et al. Viral and host causes of fatty liver in chronic hepatitis B. World J Gastroenterol. 2005;11:3056–3059.

    Article  PubMed Central  PubMed  Google Scholar 

  109. Cheng YL, Wang YJ, Kao WY, et al. Inverse association between hepatitis B virus infection and fatty liver disease: a large-scale study in populations seeking for check-up. PLoS One. 2013;8:e72049.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Wong VW, Wong GL, Yu J, et al. Interaction of adipokines and hepatitis B virus on histological liver injury in the Chinese. Am J Gastroenterol. 2010;105:132–138.

    Article  CAS  PubMed  Google Scholar 

  111. Jan CF, Chen CJ, Chiu YH, et al. A population-based study investigating the association between metabolic syndrome and hepatitis B/C infection (Keelung Community-based Integrated Screening study No. 10). Int J Obes (Lond). 2006;30:794–799.

    Article  Google Scholar 

  112. Kim CH, Kallman JB, Bai C, et al. Nutritional assessments of patients with nonalcoholic fatty liver disease. Obes Surg. 2010;20:154–160.

    Article  PubMed  Google Scholar 

  113. Chu CM, Lin DY, Liaw YF. Does increased body mass index with hepatic steatosis contribute to seroclearance of hepatitis B virus (HBV) surface antigen in chronic HBV infection? Int J Obes (Lond). 2007;31:871–875.

    Google Scholar 

  114. Westin J, Nordlinder H, Lagging M, Norkrans G, Wejstal R. Steatosis accelerates fibrosis development over time in hepatitis C virus genotype 3 infected patients. J Hepatol. 2002;37:837–842.

    Article  PubMed  Google Scholar 

  115. Petta S, Camma C, Di Marco V, et al. Hepatic steatosis and insulin resistance are associated with severe fibrosis in patients with chronic hepatitis caused by HBV or HCV infection. Liver Int. 2011;31:507–515.

    Article  CAS  PubMed  Google Scholar 

  116. Batts KP, Ludwig J. Chronic hepatitis. An update on terminology and reporting. Am J Surg Pathol. 1995;19:1409–1417.

    Article  CAS  PubMed  Google Scholar 

  117. Machado MV, Oliveira AG, Cortez-Pinto H. Hepatic steatosis in hepatitis B virus infected patients: meta-analysis of risk factors and comparison with hepatitis C infected patients. J Gastroenterol Hepatol. 2011;26:1361–1367.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China (81371603, 31100701); Guangdong Science and Technology Plan Project (2013B051000051) to Prof. Yan Wang; and the National Training Programs of Innovation and Entrepreneurship (201412121039) to Drs. Hailin Liu, Chuwen Lin, and Xiaoli Huang.

Conflict of interest

The authors have no conflicts of interest with respect to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Cw., Huang, Xl., Liu, Hl. et al. Interactions of Hepatitis B Virus Infection with Nonalcoholic Fatty Liver Disease: Possible Mechanisms and Clinical Impact. Dig Dis Sci 60, 3513–3524 (2015). https://doi.org/10.1007/s10620-015-3772-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3772-z

Keywords

Navigation