Skip to main content
Log in

Interaction Between Gastric Carcinoma Cells and Neural Cells Promotes Perineural Invasion by a Pathway Involving VCAM1

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Perineural invasion (PNI) is one of the important routes for local spread of gastric carcinoma associated with poor prognosis. However, the exact cellular characteristics and molecular mechanisms of PNI are still unclear.

Aim

To identify the interaction between gastric carcinoma cells and neural cells, and whether vascular cell adhesion molecule-1 (VCAM1) is involved in this process.

Methods

We adopted in vitro cell coculture assays to investigate the cellular and molecular interaction between gastric cancer cells and neural cells.

Results

We find upregulation of VCAM1 in clinical gastric cancer tissue samples. In in vitro tumor–neural cell coculture system, gastric cancer cells with high level of VCAM1 promote proliferation of neural progenitor cells and induce the process outgrowth and branching of neural cells. Reciprocally, neural cells enhance neurotropic migration and mobility of tumor cells. Repressing VCAM1 function through VCAM1 blocking antibody can attenuate these effects.

Conclusions

Our study indicates that VCAM1 is significantly involved in tumor invasion via mediating nerve–tumor interaction, which is a mutually beneficial process. It is possible that interaction between neural cells and tumor cells might contribute to PNI of gastric carcinoma. Inhibiting the activity of VCAM1 could be a potential strategy targeting PNI in gastric carcinoma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Are C, Rajaram S, Are M, Raj H, Anderson BO, Chaluvarya Swamy R, et al. A review of global cancer burden: trends, challenges, strategies, and a role for surgeons. J Surg Oncol. 2013;107:221–226.

    Article  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  3. Catalano V, Labianca R, Beretta GD, Gatta G, de Braud F, Van Cutsem E. Gastric cancer. Crit Rev Oncol Hematol. 2009;71:127–164.

    Article  PubMed  Google Scholar 

  4. Liebig C, Ayala G, Wilks JA, Berger DH, Albo D. Perineural invasion in cancer: a review of the literature. Cancer. 2009;115:3379–3391.

    Article  CAS  PubMed  Google Scholar 

  5. Marchesi F, Piemonti L, Mantovani A, Allavena P. Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine Growth Factor Rev. 2010;21:77–82.

    Article  CAS  PubMed  Google Scholar 

  6. Selçukbiricik F, Tural D, Büyükünal E, Serdengeçti S. Perineural invasion independent prognostic factors in patients with gastric cancer undergoing curative resection. Asian Pac J Cancer Prev. 2012;13:3149–3152.

    Article  PubMed  Google Scholar 

  7. Bilici A, Seker M, Ustaalioglu BB, Kefeli U, Yildirim E, Yavuzer D, et al. Prognostic significance of perineural invasion in patients with gastric cancer who underwent curative resection. Ann Surg Oncol. 2010;17:2037–2044.

    Article  PubMed  Google Scholar 

  8. Ayala GE, Wheeler TM, Shine HD, Schmelz M, Frolov A, Chakraborty S, et al. In vitro dorsal root ganglia and human prostate cell line interaction redefining perineural invasion in prostate cancer. Prostate. 2001;49:213–223.

    Article  CAS  PubMed  Google Scholar 

  9. Dai H, Li R, Wheeler T, Ozen M, Ittmann M, Anderson M, et al. Enhanced survival in perineural invasion of pancreatic cancer: an in vitro approach. Hum Pathol. 2007;38:299–307.

    Article  CAS  PubMed  Google Scholar 

  10. Wu TC. The role of vascular cell adhesion molecule-1 in tumor immune evasion. Cancer Res. 2007;67:6003–6006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chen Q, Massagué J. Molecular pathways: VCAM-1 as a potential therapeutic target in metastasis. Clin Cancer Res. 2012;18:5520–5525.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Semba S, Kodama Y, Ohnuma K, Mizuuchi E, Masuda R, Yashiro M, et al. Direct cancer-stromal interaction increases fibroblast proliferation and enhances invasive properties of scirrhous-type gastric carcinoma cells. Br J Cancer. 2009;101:1365–1373.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ding YB, Chen GY, Xia JG, Zang XW, Yang HY, Yang L. Association of VCAM-1 overexpression with oncogenesis, tumor angiogenesis and metastasis of gastric carcinoma. World J Gastroenterol. 2003;9:1409–1414.

    Article  CAS  PubMed  Google Scholar 

  14. Kokovay E, Wang Y, Kusek G, Wurster R, Lederman P, Lowry N, et al. VCAM1 is essential to maintain the structure of the SVZ niche and acts as an environmental sensor to regulate SVZ lineage progression. Cell Stem Cell. 2012;11:220–230.

    Article  CAS  PubMed  Google Scholar 

  15. Garton KJ, Gough PJ, Philalay J, Wille PT, Blobel CP, Whitehead RH, et al. Stimulated shedding of vascular cell adhesion molecule 1 (VCAM-1) is mediated by tumor necrosis factor-alpha-converting enzyme (ADAM 17). J Biol Chem. 2003;278:37459–37464.

    Article  CAS  PubMed  Google Scholar 

  16. Rose DM, Cardarelli PM, Cobb RR, Ginsberg MH. Soluble VCAM-1 binding to alpha4 integrins is cell-type specific and activation dependent and is disrupted during apoptosis in T cells. Blood. 2000;95:602–609.

    CAS  PubMed  Google Scholar 

  17. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science. 2004;304:1338–1340.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou H, Hasni SA, Perez P, Tandon M, Jang SI, Zheng C, et al. miR-150 promotes renal fibrosis in lupus nephritis by downregulating SOCS1. J Am Soc Nephrol. 2013;24:1073–1087.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Zheng L, Sinniah R, Hsu SI. Renal cell apoptosis and proliferation may be linked to nuclear factor-kappaB activation and expression of inducible nitric oxide synthase in patients with lupus nephritis. Hum Pathol. 2006;37:637–647.

    Article  CAS  PubMed  Google Scholar 

  20. Dunn M, Morgan MB, Beer TW. Perineural invasion: identification, significance, and a standardized definition. Dermatol Surg. 2009;35:214–221.

    Article  CAS  PubMed  Google Scholar 

  21. Chen Q, Zhang XH, Massagué J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell. 2011;20:38–49.

    Google Scholar 

  22. Marhaba R, Zöller M. CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol. 2004;35:211–231.

    Article  CAS  PubMed  Google Scholar 

  23. Huang J, Zhang J, Li H, Lu Z, Shan W, Mercado-Uribe I, et al. VCAM1 expression correlated with tumorigenesis and poor prognosis in high grade serous ovarian cancer. Am J Transl Res. 2013;5:336–346.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Shioi K, Komiya A, Hattori K, Huang Y, Sano F, Murakami T, et al. Vascular cell adhesion molecule 1 predicts cancer-free survival in clear cell renal carcinoma patients. Clin Cancer Res. 2006;12:7339–7346.

    Article  CAS  PubMed  Google Scholar 

  25. Lu W, Hu Y, Chen G, Chen Z, Zhang H, Wang F, Feng L, et al. Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy. PLoS Biol. 2012;10:e1001326.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lorusso G, Rüegg C. The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol. 2008;130:1091–1103.

    Article  CAS  PubMed  Google Scholar 

  27. Kulkarni S, Becker L, Pasricha PJ. Stem cell transplantation in neurodegenerative disorders of the gastrointestinal tract: future or fiction? Gut. 2012;61:613–621.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Estrada-Mondaca S, Carreón-Rodríguez A, Belkind-Gerson J. Biology of the adult enteric neural stem cell. Dev Dyn. 2007;236:20–32.

    Article  CAS  PubMed  Google Scholar 

  29. Natarajan D, Grigoriou M, Marcos-Gutierrez CV, Atkins C, Pachnis V. Multipotential progenitors of the mammalian enteric nervous system capable of colonising aganglionic bowel in organ culture. Development. 1999;126:157–168.

    CAS  PubMed  Google Scholar 

  30. Kruger GM, Mosher JT, Bixby S, Joseph N, Iwashita T, Morrison SJ. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron. 2002;35:657–669.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the National Nature Science Foundation of China (Nos. 81272698, 81101883, 81172368, 31200798), the Special Scientific Research Foundation of Health Sector from the National Health and Family Planning Commission of China (No. 20130206), the capital health research and development of special (No. 2011-5001-01), Major Science and Technology Project of “National Significant New Drug Creation” from the Major Science and Technology of China (No. 2011ZX09307-001-05), PLA medical and health research fund project (No. 11BJZ17), PLA Medical Technology key project of scientific research in the 12th research projects in 12th Five-Year-Plan (No. BWS12J049).

Conflict of interest

Qijun Xia, Qing-Ran Bai, Maosheng Dong, Xicai, Sun, Haihong Zhang, Hongqin Xi, Xiao-Ling Hu, Qin Shen and Lin Chen declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Ling Hu, Qin Shen or Lin Chen.

Additional information

Qijun Xia and Qing-Ran Bai have contributed equally to this work. Lin Chen is the corresponding author of this article and Xiao-Ling Hu and Qin Shen are the co-corresponding authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Q., Bai, QR., Dong, M. et al. Interaction Between Gastric Carcinoma Cells and Neural Cells Promotes Perineural Invasion by a Pathway Involving VCAM1. Dig Dis Sci 60, 3283–3292 (2015). https://doi.org/10.1007/s10620-015-3758-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3758-x

Keywords

Navigation