Skip to main content

Advertisement

Log in

Hepatitis B Virus Core Promoter A1762T/G1764A (TA)/T1753A/T1768A Mutations Contribute to Hepatocarcinogenesis by Deregulating Skp2 and P53

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aim

Hepatitis B virus core promoter (CP) mutations can increase risk of hepatocellular carcinoma. The CP region overlaps with the HBV X (HBx) gene, which has been associated with hepatocarcinogenesis. The cyclin kinase inhibitor P53 is an important regulator of cell cycle progression. We determined whether HBx mutants that result from mutations in the CP deregulate P53.

Methods

A HBx combination (combo) mutant with changes in the CP region that corresponded to A1762T/G1764A (TA), T1753A, and T1768A was constructed and expressed in L-02 and Hep3B cells. The effects of CP mutations on expression and degradation of P53, and the effects on cell cycle progression and proliferation were analyzed.

Results

The combo mutant decreased levels of P53 and increased cyclin D1 expression, accelerated P53 degradation in L-02 cells, accelerated cell cycle progression, and increased expression of S-phase kinase-associated protein 2 (Skp2) in L-02 and Hep3B cells. Silencing of Skp2 abrogated the effects of CP mutations on P53 expression. The kinetics of P53 expression correlated with changes in cell cycle distribution.

Conclusions

The HBx mutant with a combination of CP mutations can up-regulate Skp2, which then down-regulates P53 via ubiquitin-mediated proteasomal degradation, increasing the risk of hepatocellular carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Farazi PA, Glickman J, Horner J, et al. Cooperative interactions of p53 mutation, telomere dysfunction and chronic liver damage in hepatocellular carcinoma progression. Cancer Res. 2006;66:4766–4773.

    Article  CAS  PubMed  Google Scholar 

  2. Chen JG, Zhang SW. Liver cancer epidemic in China: past present and future. Semin Cancer Biol. 2011;21:59–69.

    Article  PubMed  Google Scholar 

  3. Yang HI, Lu SN, Liaw YF, Taiwan Community-Based Cancer Screening Project Group, et al. Hepatitis B e antigen and the risk of hepatocellular carcinoma. N Engl J Med. 2002;347:168–174.

    Article  CAS  PubMed  Google Scholar 

  4. el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–825.

    Article  CAS  PubMed  Google Scholar 

  5. Yuen MF, Tanaka Y, Shinkai N, et al. Risk for hepatocellular carcinoma with respect to hepatitis B virus genotypes B/C, specific mutations of enhancer II/core promoter/precore regions and HBV DNA levels. Gut. 2008;57:98–102.

    Article  CAS  PubMed  Google Scholar 

  6. Yang HI, Yeh SH, Chen PJ, et al. Associations between hepatitis B virus genotype and mutants and the risk of hepatocellular carcinoma. J Natl Cancer Inst. 2008;100:1134–1143.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Chen CJ, Yang HI, Su J, et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA. 2006;295:65–73.

    Article  CAS  PubMed  Google Scholar 

  8. Kao JH, Chen PJ, Lai MY, et al. Basal core promoter mutations of hepatitis B virus increase the risk of hepatocellular carcinoma in hepatitis B carrier. Gastroenterology. 2003;124:327–334.

    Article  CAS  PubMed  Google Scholar 

  9. Tsubota A, Arase Y, Ren F, et al. Genotype may correlate with liver carcinogenesis and tumor characteristics in cirrhotic patients infected with hepatitis B virus subtype adw. J Med Virol. 2001;65:257–265.

    Article  CAS  PubMed  Google Scholar 

  10. Yuen MF, Tanaka Y, Mizokami M, et al. Role of hepatitis B virus genotypes Ba and C, core promoter and precore mutations on hepatocellular carcinoma: a case control study. Carcinogenesis. 2004;25:1593–1598.

    Article  CAS  PubMed  Google Scholar 

  11. Hsieh YH, Su IJ, Wang HC, et al. Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis. 2004;25:2023–2032.

    Article  CAS  PubMed  Google Scholar 

  12. Hwang GY, Lin CY, Huang LM, et al. Detection of the hepatitis B virus X protein (HBx) antigen and anti-HBx antibodies in cases of human hepatocellular carcinoma. J Clin Microbiol. 2003;41:5598–5603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Oon CJ, Chen WN, Goh KT, et al. Molecular characterization of hepatitis B virus surface antigen mutant in Singapore patients with hepatocellular carcinoma and hepatitis B virus carrier negative for HBsAg but positive for anti-HBs and anti-HBc. J Gastroenterol Hepatol. 2002;17:S491–S496.

    Article  CAS  PubMed  Google Scholar 

  14. Liu S, Zhang H, Gu C, et al. Associations between hepatitis B virus mutations and the risk of hepatocellular carcinoma: a meta-analysis. J Natl Cancer Inst. 2009;101:1066–1082.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Guo X, Jin Y, Qian G, et al. Sequential accumulation of the mutations in core promoter of hepatitis B virus is associated with the development of hepatocellular carcinoma in Qidong, China. J Hepatol. 2008;49:718–725.

    Article  CAS  PubMed  Google Scholar 

  16. Parekh S, Zoulim F, Ahn SH, et al. Genome replication, virion secretion, and e antigen expression of naturally occurring hepatitis B virus core promoter mutants. J Virol. 2003;77:6601–6612.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Buckwold VE, Xu Z, Chen M, et al. Effects of a naturally occurring mutation in the hepatitis B virus basal core promoter on precore gene expression and viral replication. J Virol. 1996;70:5845–5851.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Chu CJ, Keeffe EB, Han SH, et al. Prevalence of HBV precore/core promoter variants in the United States. Hepatology. 2003;38:619–628.

    Article  CAS  PubMed  Google Scholar 

  19. Fang ZL, Sabin CA, Dong BQ, et al. The association of HBV core promoter double mutations (A1762T and G1764A) with viral load differs between HBeAg positive and anti-HBe positive individuals: a longitudinal analysis. J Hepatol. 2009;50:273–280.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Chun YK, Kim JY, Woo HJ, et al. No significant correlation exists between core promoter mutations, viral replication, and liver damage in chronic hepatitis B infection. Hepatology. 2002;32:1154–1162.

    Article  Google Scholar 

  21. Bouchard MJ, Schneider RJ. The enigmatic X gene of hepatitis B virus. J Virol. 2004;78:12725–12734.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hu Z, Zhang Z, Doo E, et al. Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex. J Virol. 1999;73:7231–7240.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Lin Y, Nomura T, Yamashita T, et al. The transactivation and p53-interacting functions of hepatitis B virus X protein are mutually interfering but distinct. Cancer Res. 1997;57:5137–5142.

    CAS  PubMed  Google Scholar 

  24. Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet. 2002;31:339–346.

    Article  CAS  PubMed  Google Scholar 

  25. Huang Y, Tong S, Tai AW, et al. Hepatitis B virus core promoter mutations contribute to hepatocarcinogenesis via deregulation of SKP2 and its target p21. Gastroenterology. 2011;141:1412–1421.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lane DP. Cancer: p53, guardian of the genome. Nature. 1992;358:15–16.

    Article  CAS  PubMed  Google Scholar 

  27. Wu X, Levine AJ. p53 and E2F-l cooperate to mediate apoptosis. Proc Natl Acad Sci USA. 1994;91:23602–23606.

    Google Scholar 

  28. Wang XW, Vermeulen W, Coursen JD, et al. The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev. 1996;10:1219–1231.

    Article  CAS  PubMed  Google Scholar 

  29. Dulić V, Kaufmann WK, Wilson SJ, et al. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell. 1994;76:1013–1023.

    Article  PubMed  Google Scholar 

  30. Feitelson MA, Zhu M, Duan LX, et al. Hepatitis B X antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular carcinoma. Oncogene. 1993;8:1109–1117.

    CAS  PubMed  Google Scholar 

  31. Wang XW, Forrester K, Yeh H, et al. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc Natl Acad Sci USA. 1994;91:2230–2234.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Truant R, Antunovic J, Greenblatt J, et al. Direct interaction of the hepatitis B virus HBx protein with p53 leads to inhibition by HBx of p53 response element-directed transactivation. J Virol. 1995;69:1851–1859.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Ueda H, Ullrich SJ, Gangemi JD, et al. Functional inactivation but not structural mutation of p53 causes liver cancer. Nat Genet. 1995;9:41–47.

    Article  CAS  PubMed  Google Scholar 

  34. Lee H, Lee YH, Huh YS, et al. X-gene product antagonize the p53-mediated inhibition of hepatitis B virus replication through regulation of the pregenomic/core promoter. J Biol Chem. 1995;270:31405–31412.

    Article  CAS  PubMed  Google Scholar 

  35. Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer. 2008;8:438–449.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Wang XW, Gibson MK, Vermeulen W, et al. Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer Res. 1995;52:6012–6016.

    Google Scholar 

  37. Hoeller D, Dikic I. Targeting the ubiquitin system in cancer therapy. Nature. 2009;458:438–444.

    Article  CAS  PubMed  Google Scholar 

  38. Kramvis A, Kew MC. The core promoter of hepatitis B virus. J Viral Hepat. 1999;6:415–427.

    Article  CAS  PubMed  Google Scholar 

  39. Chou YC, Yu MW, Wu CF, et al. Temporal relationship between hepatitis B virus enhancer II/basal core promoter sequence variation and risk of hepatocellular carcinoma. Gut. 2008;57:91–97.

    Article  CAS  PubMed  Google Scholar 

  40. Jang JW, Lee YC, Kim MS, et al. A 13-year longitudinal study of the impact of double mutations in the core promoter region of hepatitis B virus on HBeAg seroconversion and disease progression in patients with genotype C chronic active hepatitis. J Viral Hepat. 2007;14:169–175.

    Article  CAS  PubMed  Google Scholar 

  41. Liu CJ, Chen BF, Chen PJ, et al. Role of hepatitis B virus precore/core promoter mutations and serum viral load on noncirrhotic hepatocellular carcinoma: a case control study. J Infect Dis. 2006;194:594–599.

    Article  CAS  PubMed  Google Scholar 

  42. Sakamoto T, Tanaka Y, Orito E, et al. Novel subtypes (subgenotypes) of hepatitis B virus genotypes B and C among chronic liver disease patients in the Philippines. J Gen Virol. 2006;87:1873–1882.

    Article  CAS  PubMed  Google Scholar 

  43. Tanaka Y, Mukaide M, Orito E, et al. Specific mutations in enhancer II/core promoter of hepatitis B virus subgenotypes C1/C2 increase the risk of Hepatocellular carcinoma. J Hepatol. 2006;45:646–653.

    Article  CAS  PubMed  Google Scholar 

  44. Ito K, Tanaka Y, Orito E, et al. T1653 mutation in the box alpha increases the risk of hepatocellular carcinoma in patients with chronic hepatitis B virus genotype C infection. Clin Infect Dis. 2006;42:1–7.

    Article  CAS  PubMed  Google Scholar 

  45. Takahashi K, Ohta Y, Kanai K, et al. Clinical implications of mutations C-to-T1653 and T-to-C/A/G1753 of hepatitis B virus genotype C genome in chronic liver disease. Arch Virol. 2009;144:1299–1308.

    Article  Google Scholar 

  46. Chirillo P, Pagano S, Natoli G, et al. The hepatitis B virus X gene induces p53-mediated programmed cell death. Proc Natl Acad Sci USA. 1997;94:8162–8167.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Kim H, Lee H, Yun Y. X-gene product of hepatitis B virus induces apoptosis in liver cells. J Biol Chem. 1998;73:381–385.

    Article  Google Scholar 

  48. Terradillos O, Pollicino T, Lecoeur H, et al. p53-independent apoptotic effects of the hepatitis B virus HBx protein in vivo and in vitro. Oncogene. 1998;17:2115–2123.

    Article  CAS  PubMed  Google Scholar 

  49. Su F, Schneider RJ. Hepatitis B virus HBx protein sensitizes cells to apoptotic killing by tumor necrosis factor alpha. Proc Natl Acad Sci USA. 1997;94:8744–8749.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Elmore LW, Hancock AR, Chang SF, et al. Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proc Natl Acad Sci USA. 1997;94:14707–14712.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Marusawa H, Matsuzawa S, Welsh K, et al. HBXIP functions as a cofactor of survivin in apoptosis suppression. EMBO J. 2003;22:2729–2740.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Shih WL, Kuo ML, Chuang SE, et al. Hepatitis B virus X protein inhibits transforming growth factor-beta-induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway. J Biol Chem. 2000;275:25858–25864.

    Article  CAS  PubMed  Google Scholar 

  53. Koike K, Moriya K, Yotsuyanagi H, et al. Induction of cell cycle progression by hepatitis B virus HBx gene expression in quiescent mouse fibroblasts. J Clin Invest. 1994;94:44–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Madden CR, Finegold MJ, Slagle BL. Hepatitis B virus X protein acts as a tumor promoter in development of diethylnitrosamine induced preneoplastic lesions. J Virol. 2001;75:3851–3858.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer. 2002;2:594–604.

    Article  CAS  PubMed  Google Scholar 

  56. Nakayama KI, Nakayama K. Ubiquitin ligase: cell-cycle control and cancer. Nat Rev Cancer. 2006;6:369–381.

    Article  CAS  PubMed  Google Scholar 

  57. Kim SY, Herbst A, Tworkowski KA, et al. Skp2 regulates Myc protein stability and activity. Mol Cell. 2003;11:1177–1188.

    Article  CAS  PubMed  Google Scholar 

  58. Masuda TA, Inoue H, Sonoda H, et al. Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res. 2003;62:3819–3825.

    Google Scholar 

  59. Jiang F, Caraway NP, Li R, et al. RNA silencing of S-phase kinase-interacting protein 2 inhibits proliferation and centrosome amplification in lung cancer cells. Oncogene. 2005;24:3409–3418.

    Article  CAS  PubMed  Google Scholar 

  60. Lee SH, McCormick F. Downregulation of Skp2 and p27/Kip1 synergistically induces apoptosis in T98G glioblastoma cells. J Mol Med. 2005;83:296–307.

    Article  CAS  PubMed  Google Scholar 

  61. Harada K, Supriatno Kawashima Y, et al. Down-regulation of S-phase kinase associated protein 2 (Skp2) induces apoptosis in oral cancer cells. Oral Oncol. 2005;41:623–630.

    Article  CAS  PubMed  Google Scholar 

  62. Gao D, Inuzuka H, Tseng A, et al. Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol. 2009;11:397–408.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Calvisi DF, Ladu S, Pinna F, et al. SKP2 and CKS1 promote degradation of cell cycle regulators and are associated with hepatocellular carcinoma prognosis. Gastroenterology. 2009;137:1816–1826.

    Article  CAS  PubMed  Google Scholar 

  64. Qiao L, Leach K, McKinstry R, et al. Hepatitis B virus X protein increases expression of p21(Cip-1/WAF1/MDA6) and p27(Kip-1) in primary mouse hepatocytes, leading to reduced cell cycle progression. Hepatology. 2001;34:906–917.

    Article  CAS  PubMed  Google Scholar 

  65. Park US, Park SK, Lee YI, et al. Hepatitis B virus-X protein upregulates the expression of p21waf1/cip1 and prolongs G1¡S transition via a p53-independent pathway in human hepatoma cells. Oncogene. 2000;19:3384–3394.

    Article  CAS  PubMed  Google Scholar 

  66. Kwun HJ, Jang KL. Natural variants of hepatitis B virus X protein have differential effects on the expression of cyclin-dependent kinase inhibitor p21 gene. Nucleic Acids Res. 2004;32:2202–2213.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of Guangdong Province (S2013010016015, Meihai Deng), The National Natural Science Fund for Young Scholars of China (81000177, Yuesi Zhong) and The Projects on Science and Technology plan of Guangzhou City (2013J410061-1955, Meihai Deng).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meihai Deng.

Additional information

Zhicheng Yao and Kunpeng Hu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Yao, Z., Hu, K. et al. Hepatitis B Virus Core Promoter A1762T/G1764A (TA)/T1753A/T1768A Mutations Contribute to Hepatocarcinogenesis by Deregulating Skp2 and P53. Dig Dis Sci 60, 1315–1324 (2015). https://doi.org/10.1007/s10620-014-3492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3492-9

Keywords

Navigation