Skip to main content

Advertisement

Log in

Multi-Target Stool DNA Test: A New High Bar for Noninvasive Screening

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Stool DNA testing has evolved into what is now a highly accurate and well-validated test for the screen detection of colorectal neoplasia. An optimized and automated multi-target stool DNA test (MT-sDNA) has achieved the same high point-sensitivities as reported for colonoscopy and significantly higher sensitivity than by fecal immunochemical blood testing for detection of early-stage cancer and advanced precancer. Thus, MT-sDNA sets a new high criterion standard for the noninvasive screen detection of colorectal neoplasia. With clinical application, MT-sDNA has potential to meaningfully address current gaps in our approach to CRC screening through benefits of its high accuracy on screening effectiveness, user-friendly features on patient compliance, and easy mail-out distribution on test access. The US Food and Drug Administration and Center for Medicaid and Medicare Services have recently completed their parallel reviews of MT-sDNA, which has just become available for clinical use. This review summarizes the recent clinical validation data on MT-sDNA, addresses central clinical questions at this front end of implementation, and touches on innovative future applications of stool DNA testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sidransky D, Tokino T, Hamilton SR, et al. Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors. Science. 1992;256:102–105.

    Article  CAS  PubMed  Google Scholar 

  2. Ahlquist DA, Skoletsky JE, Boynton KA, et al. Colorectal cancer screening by detection of altered human DNA in stool: feasibility of a multitarget assay panel. Gastroenterology. 2000;119:1219–1227.

    Article  CAS  PubMed  Google Scholar 

  3. Dong SM, Traverso G, Johnson C, et al. Detecting colorectal cancer in stool with the use of multiple genetic targets. J Natl Cancer Inst. 2001;93:858–865.

    Article  CAS  PubMed  Google Scholar 

  4. Imperiale TF, Ransohoff DF, Itzkowitz SH, et al. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med. 2014;370:1287–1297.

    Article  CAS  PubMed  Google Scholar 

  5. Bressler B, Paszat LF, Vinden C, Li C, et al. Colonoscopic miss rates for right-sided colon cancer: a population-based analysis. Gastroenterology. 2004;127:452–456.

    Article  PubMed  Google Scholar 

  6. Patel SG, Ahnen DJ. Prevention of interval colorectal cancers: what every clinician needs to know. Clin Gastroenterol Hepatol. 2014;12:7–15.

    Article  PubMed  Google Scholar 

  7. Cooper GS, Xu F, Barnholtz Sloan JS, et al. Prevalence and predictors of interval colorectal cancers in medicare beneficiaries. Cancer. 2012;118:3044–3052.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Singh H, Nugent Z, Mahmud SM, et al. Predictors of colorectal cancer after negative colonoscopy: a population-based study. Am J Gastroenterol. 2010;105:663–673.

    Article  PubMed  Google Scholar 

  9. Samadder NJ, Curtin K, Tuohy TMF, et al. Characteristics of missed or interval colorectal cancer and patient survival: a population-based study. Gastroenterology. 2014;146:950–960.

    Article  PubMed  Google Scholar 

  10. Lidgard GP, Dominco M, Bruinsma JJ, Gagrat ZD, Oldham-Haltom RL, et al. Clinical performance of an automated stool DNA assay for detection of colorectal neoplasia. Clin Gastroenterol Hepatol. 2013;11:1313–1318.

    Article  CAS  PubMed  Google Scholar 

  11. Ahlquist DA, Harrington JJ, Burgart LJ, Roche PC. Morphometric analysis of the “mucocellular layer” overlying colorectal cancer and normal mucosa: relevance to exfoliation and stool screening. Hum Pathol. 2000;31:51–57.

    Article  CAS  PubMed  Google Scholar 

  12. Berger BM, Ahlquist DA. Stool DNA screening for colorectal neoplasia: biological and technical basis for high detection rates. Pathology. 2012;44:80–88.

    Article  CAS  PubMed  Google Scholar 

  13. Ahlquist DA. Molecular detection of colorectal neoplasia. Gastroenterology. 2010;138:2127–2139.

    Article  CAS  PubMed  Google Scholar 

  14. Zou H, Taylor WR, Harrington JJ, et al. High detection rates of colorectal neoplasia by stool DNA testing with a novel digital melt curve assay. Gastroenterology. 2009;136:459–470.

    Article  CAS  PubMed  Google Scholar 

  15. Diehl F, Schmidt K, Durkee KH, et al. Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology. 2008;135:489–498.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Boynton KA, Summerhayes IC, Ahlquist DA, Shuber AP. DNA integrity as a potential marker for stool-based detection of colorectal cancer. Clin Chem. 2003;49:1058–1065.

    Article  CAS  PubMed  Google Scholar 

  17. Zou H, Harrington JJ, Klatt KK, Ahlquist DA. A sensitive method to quantify human long DNA in stool: relevance to colorectal cancer screening. Cancer Epidemiol Biomarkers Prev. 2006;15:1115–1119.

    Article  CAS  PubMed  Google Scholar 

  18. Ahlquist DA, Zou H, Domanico M, et al. Next-generation stool DNA test accurately detects colorectal cancer and large adenomas. Gastroenterology. 2012;142:248–56; quiz e25–e26.

  19. Kisiel JB, Ahlquist DA. Stool DNA screening for colorectal cancer: opportunities to improve value with next generation tests. J Clin Gastroenterol. 2010;45:301–308.

    Article  Google Scholar 

  20. Morikawa T, Kato J, Yamaji Y, Wada R, Mitsushima T, Shiratori Y. A comparison of the immunochemical fecal occult blood test and total colonoscopy in the asymptomatic population. Gastroenterology. 2005;129:422–428.

    Article  PubMed  Google Scholar 

  21. Ahlquist DA, Sargent DJ, Loprinzi CL, et al. Stool DNA and occult blood testing for screen detection of colorectal neoplasia. Ann Intern Med. 2008;149:441–450, W81.

  22. Atkin WS, Edwards R, Kralj-Hans I, et al. Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: a multicentre randomised controlled trial. Lancet. 2010;375:1624–1633.

    Article  PubMed  Google Scholar 

  23. Schoen RE, Pinsky PF, Weissfeld JL, et al. Colorectal-cancer incidence and mortality with screening flexible sigmoidoscopy. N Engl J Med. 2012;366:2345–2357.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Baxter NN, Goldwasser MA, Paszat LF, Saskin R, Urbach DR, Rabeneck L. Association of colonoscopy and death from colorectal cancer. Ann Intern Med. 2009;150:1–8.

    Article  PubMed  Google Scholar 

  25. Brenner H, Hoffmeister M, Arndt V, Stegmaier C, Altenhofen L, Haug U. Protection from right- and left-sided colorectal neoplasms after colonoscopy: population-based study. J Natl Cancer Inst. 2010;102:89–95.

    Article  PubMed  Google Scholar 

  26. Nishihara R, Wu K, Lochhead MB, Morikawa T, et al. Long-term colorectal cancer incidence and mortality after lower endoscopy. N Engl J Med. 2013;369:1095–1105.

    Article  CAS  PubMed  Google Scholar 

  27. Berger BM, Imperiale T, Hilsden R, Sutter A, et al. Noninvasive detection of sessile serrated polyps in an average risk colorectal cancer screening population: comparison of stool-based multi-target DNA and fecal immunochemical testing. Gastroenterology. 2014;146:S-31.

  28. Redwood D, Esay A, Sacco P, Christensen C, et al. Stool DNA testing for screen-detection of colorectal neoplasia in Alaska native people. Gastroenterology. 2014;146:S-403.

  29. Lieberman DA, Ransohoff D, Winawer SJ, Giardello FM, et al. Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the US multi-society task force on colorectal cancer. Gastroenterology. 2012;143:844–857.

    Article  PubMed  Google Scholar 

  30. Kozarek RA, Botoman VA, Bredfeldt JE, Roach JM, Patterson DJ, Ball TJ. Portal colopathy: prospective study of colonoscopy in patients with portal hypertension. Gastroenterology. 1991;101:1192–1197.

    CAS  PubMed  Google Scholar 

  31. Allison JE, Meijer G. Colonic polyps: the harm of overdiagnosis. Pract Gastroenterol. 2012:25–38.

  32. Stryker SJ, Wolff BG, Culp CE, Libbe SD, Ilstrup DM, MacCarty RL. Natural history of untreated colonic polyps. Gastroenterology. 1987;93:1009–1013.

    CAS  PubMed  Google Scholar 

  33. Pickhardt PJ. The natural history of colorectal polyps and masses: rediscovered truths from the barium enema era. Am J Radiol. 2007;188:619–621.

    Google Scholar 

  34. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–532.

    Article  CAS  PubMed  Google Scholar 

  35. Rubio CA. Qualitative DNA differences between two structurally different lesions: high-grade dysplasia and carcinoma in situ in colorectal adenomas. Anticancer Res. 2007;27:2881–2886.

    CAS  PubMed  Google Scholar 

  36. Rubio CA, Delinassios JG. Invasive carcinomas may arise in colorectal adenomas with high-grade dysplasia and with carcinoma in situ. Int J Clin Exp Med. 2010;3:41–47.

    PubMed Central  PubMed  Google Scholar 

  37. Toll AD, Fabius D, Hyslop T, Pequignot E, et al. Prognostic significance of high-grade dysplasia in colorectal adenomas. Colorectal Dis. 2011;13:370–373.

    Article  CAS  PubMed  Google Scholar 

  38. Sheridan TB, Fenton H, Lewin MR, et al. Sessile serrated adenomas with low- and high-grade dysplasia and early carcinomas: an immunohistochemical study of serrated lesions “caught in the act”. Am J Clin Pathol. 2006;126:564–571.

    Article  PubMed  Google Scholar 

  39. Pickhardt PJ, Hain KS, Kim DH, Hassan C. Low rates of cancer or high-grade dysplasia in colorectal polyps collected from computed tomography colonography screening. Clin Gastroenterol Hepatol. 2010;8:610–615.

    Article  PubMed  Google Scholar 

  40. Bozic I, Antal T, Ohtsuk H, Carter H, et al. Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci USA. 2010;107:18545–18550.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ahlquist DA, Taylor WR, Yab TC, et al. Aberrantly methylated gene marker levels in stool: effects of demographic, exposure, body mass, and other patient characteristics. J Mol Biomark Diagn. 2012;3:1–7.

  42. Zou HJ, Hussain FT, Cao X, et al. Stool DNA and occult blood for detection of colorectal cancer: complementary markers. Gastroenterology. 2009;136:A625.

    Article  Google Scholar 

  43. Heigh RI, Yab TC, Taylor WR, Hussain FT, Smyrk TC, et al. Detection of colorectal serrated polyps by stool DNA testing: comparison with fecal immunochemical testing for occult blood (FIT). PLoS ONE. 2014;9:e85659.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Grutzmann R, Molnar B, Pilarsky C, et al. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS ONE. 2008;3:e3759.

    Article  PubMed Central  PubMed  Google Scholar 

  45. deVos T, Tetzner R, Model F, et al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin. Chem.. 2009;55:1337–1346.

    Article  CAS  PubMed  Google Scholar 

  46. Tanzer M, Balluff B, Distler J, et al. Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PLoS ONE. 2010;5:e9061.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Church TRWM, Lofton-Day C, Mongin S, Blumenstein BA, et al. Prospective clinical validation of an assay for methylated SEPT9 DNA in human plasma as a colorectal cancer screening tool in average risk men and women ≥50 years (abstract). Gastroenterology. 2010;130:e18.

    Article  Google Scholar 

  48. DA Ahlquist TW, Mahoney DW, Zou H, Domanico M, et al. The stool DNA test is more accurate than the plasma septin 9 test in detecting colorectal neoplasia. Clin Gastroenterol Hepatol. 2012;10:272–277.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Church TR, Wandell M, Lofton-Day C, et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut. 2014;63:317–325.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Brenner H, Chang-Claude J, Seiler CM, Rickert A, Hoffmeister M. Protection from colorectal cancer after colonoscopy: a population-based, case–control study. Ann Intern Med. 2011;154:22–30.

    Article  PubMed  Google Scholar 

  51. Sawhney MS, Farrar W, Gudiseva S, et al. Microsatellite instability in interval colon cancers. Gastroenterology. 2006;131:1700–1705.

    Article  PubMed  Google Scholar 

  52. Imperiale TF, Eckert G, Juliar BE, Azzouz F, Ransohoff DF. Prevalence and variable detection of proximal colon serrated polyps during screening colonoscopy. Gastrointest Endosc. 2009;69:1288–1295.

    Article  PubMed  Google Scholar 

  53. Pickhardt PJ, Choi JR, Hwang I, et al. Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults. N Engl J Med. 2003;349:2191–2200.

    Article  CAS  PubMed  Google Scholar 

  54. Kahi CJ, Hewett DG, Norton DL, Eckert GJ, Rex DK. Prevalence and variable detection of proximal colon serrated polyps during screening colonoscopy. Clin Gastroenterol Hepatol. 2011;9:42–46.

    Article  PubMed  Google Scholar 

  55. Kaminski MF, Regula J, Kraszewska E, Polkowski M, et al. Quality indicators for colonoscopy and the risk of interval cancer. N Engl J Med. 2010;362:1795–1803.

    Article  CAS  PubMed  Google Scholar 

  56. DA Corley JC, Marks AR, Zhao WK, et al. Adenoma detection rate and the risk of colorectal cancer and death. N Engl J Med. 2014;370:1298–1306.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Bampton PA, Sandford J, Cole SR, Smith A, et al. Interval faecal occult blood testing in a colonoscopy based screening programme detects additional pathology. Gut. 2005;54:803–806.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Burnett-Hartman AN, Newcomb P, Phipps AI, Passarelli MN, Grady WM. Colorectal endoscopy, advanced adenomas, and sessile serrated polyps: implications for proximal colon cancer. Am J Gastroenterol. 2012;107:1213–1219.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Lebwohl B, Kastrinos F, Glick M, Rosenbaum AJ, et al. The impact of suboptimal bowel preparation on adenoma miss rates and the factors associated with early repeat colonoscopy. Gastrointest Endosc. 2011;73:1207–1214.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Levin B, Lieberman DA, McFarland B, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US multi-society task force on colorectal cancer, and the American College of Radiology. CA Cancer J Clin. 2008;58:130–160.

  61. Ahlquist DA, Sargent D, Loprinzi CL, Goldberg RM, et al. False-positive stool DNA results on colorectal cancer screening: yield from supracolonic evaluation. Gastroenterology. 2004;126:A-58.

  62. Jess T, Loftus E Jr, Velayos FS, et al. Risk of intestinal cancer in inflammatory bowel disease: a population based study from Olmsted county, Minnesota. Gastroenterology. 2006;130:1039–1046.

    Article  PubMed  Google Scholar 

  63. Itzkowitz SH, Harpaz N. Diagnosis and management of dysplasia in patients with inflammatory bowel diseases. Gastroenterology. 2004;126:1634–1648.

    Article  PubMed  Google Scholar 

  64. Farraye FA, Odze R, Eaden J, Itzkowitz SH, Harpaz N. AGA technical review on the diagnosis and management of colorectal neoplasia in inflammatory bowel disease. Gastroenterology. 2010;138:746–774.

    Article  PubMed  Google Scholar 

  65. Subramanian V, Mannath J, Ragunath K, Hawkey CJ. Meta-analysis: the diagnostic yield of chromoendoscopy for detecting dysplasia in patients with colonic inflammatory bowel disease. Ailment Pharmacol Ther. 2011;33:304–312.

    Article  CAS  Google Scholar 

  66. Karlen P, Kornfeld D, Brostrom O, Lofberg R, Persson PG, Ekbom A. Is colonoscopic surveillance reducing colorectal cancer mortality in ulcerative colitis? A population based case control study. Gut. 1998;42:711–714.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Velayos FS, Liu L, Lewis JD, et al. Prevalence of colorectal cancer surveillance for ulcerative colitis in an integrated health care delivery system. Gastroenterology. 2010;139:1511–1518.

    Article  PubMed  Google Scholar 

  68. Kisiel JB, Yab T, Hussain FTH, Taylor WR, et al. Stool DNA testing for the detection of colorectal neoplasia in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2013;37:546–554.

    Article  CAS  PubMed  Google Scholar 

  69. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  70. Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomark Prev. 2010;19:1893–1907.

    Article  Google Scholar 

  71. Rahib L, Smith B, Aizenberg R, Rosenzweigh AB, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–2921.

    Article  CAS  PubMed  Google Scholar 

  72. Ahlquist DA. Next-generation stool DNA testing: expanding the scope. Gastroenterology. 2009;136:2068–2073.

    Article  CAS  PubMed  Google Scholar 

  73. Kisiel JB, Yab TC, Taylor WR, Chari ST, et al. Stool DNA testing for the detection of pancreatic cancer: assessment of methylation marker candidates. Cancer. 2012;118:2623–2631.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Strauss BB, Yab TC, OConnor HM, Taylor WR, et al. Fecal recovery of ingested cellular DNA: implications for noninvasive detection of upper gastrointestinal neoplasms. Gastroenterology. 2014;146:S-323–S-4.

  75. Kisiel JB, Taylor WR, Yab TC, Mahoney DW, et al. Novel methylated DNA markers predict site of gastrointestinal cancer. Gastroenterology. 2013;144:S-84.

Download references

Conflict of interest

Mayo Clinic is a minor equity investor in and has licensed technology to Exact Sciences related to the content of this review (Madison, WI, USA). Dr. Ahlquist is an inventor of licensed technology, a scientific advisor to Exact Sciences, and receives funding from Exact Sciences for collaborative research. In keeping with institutional policy, he shares royalties that come to Mayo Clinic. Dr. Ahlquist is solely responsible for the content of this review, and Exact Sciences played no role in its direction or preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Ahlquist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahlquist, D.A. Multi-Target Stool DNA Test: A New High Bar for Noninvasive Screening. Dig Dis Sci 60, 623–633 (2015). https://doi.org/10.1007/s10620-014-3451-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3451-5

Keywords

Navigation