Skip to main content

Advertisement

Log in

Autoimmunity Links Vinculin to the Pathophysiology of Chronic Functional Bowel Changes Following Campylobacter jejuni Infection in a Rat Model

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Acute gastroenteritis can precipitate irritable bowel syndrome (IBS) in humans. Cytolethal distending toxin is common to all pathogens causing gastroenteritis. Its active subunit, CdtB, is associated with post-infectious bowel changes in a rat model of Campylobacter jejuni infection, including small intestinal bacterial overgrowth (SIBO).

Aim

To evaluate the role of host antibodies to CdtB in contributing to post-infectious functional sequelae in this rat model.

Methods

Ileal tissues from non-IBS human subjects, C. jejuni-infected and control rats were immunostained with antibodies to CdtB, c-Kit, S-100, PGP 9.5 and vinculin. Cytosolic and membrane proteins from mouse enteric neuronal cell lysates were immunoprecipitated with anti-CdtB and analyzed by mass spectrometry. ELISAs were performed on rat cardiac serum using CdtB or vinculin as antigens.

Results

Anti-CdtB antibodies bound to a cytosolic protein in interstitial cells of Cajal (ICC) and myenteric ganglia in C. jejuni-infected and naïve rats and human subjects. Mass spectrometry identified vinculin, confirmed by co-localization and ELISAs. Anti-CdtB antibodies were higher in C. jejuni-infected rats (1.27 ± 0.15) than controls (1.76 ± 0.12) (P < 0.05), and rats that developed SIBO (2.01 ± 0.18) vs. rats that did not (1.44 ± 0.11) (P = 0.019). Vinculin expression levels were reduced in C. jejuni-infected rats (0.058 ± 0.053) versus controls (0.087 ± 0.023) (P = 0.0001), with greater reductions in rats with two C. jejuni infections (P = 0.0001) and rats that developed SIBO (P = 0.001).

Conclusions

Host anti-CdtB antibodies cross-react with vinculin in ICC and myenteric ganglia, required for normal gut motility. Circulating antibody levels and loss of vinculin expression correlate with number of C. jejuni exposures and SIBO, suggesting that effects on vinculin are important in the effects of C. jejuni infection on the host gut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choung RS, Locke GR 3rd. Epidemiology of IBS. Gastroenterol Clin North Am. 2011;40:1–10.

    Article  PubMed  Google Scholar 

  2. Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2012;10:712 e714–721 e714.

    Google Scholar 

  3. Lembo A. The clinical and economic burden of irritable bowel syndrome. Pract Gastroenterol. 2007;20:3–9.

    Google Scholar 

  4. Cash B. Economic impact of irritable bowel syndrome: what does the future hold? Am J Manag Care. 2005;11:S4–S6.

    PubMed  Google Scholar 

  5. American Gastroenterological Association. The Burden of Gastrointestinal Diseases. Bethesda, MD: American Gastroenterological Association; 2001.

  6. Agarwal N, Spiegel BM. The effect of irritable bowel syndrome on health-related quality of life and health care expenditures. Gastroenterol Clin North Am. 2011;40:11–19.

    Article  PubMed  Google Scholar 

  7. Thompson WG, Longstreth GF, Drossman DA, Heaton KW, Irvine EJ, Muller-Lissner SA. Functional bowel disorders and functional abdominal pain. Gut. 1999;45:II43–II47.

    PubMed Central  PubMed  Google Scholar 

  8. Drossman DA, Richter JE, Talley NJ, Corazziari E, Thompson WG, Whitehead WE. Functional gastrointestinal disorders. Boston: Little Brown; 1994.

    Google Scholar 

  9. Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional bowel disorders. Gastroenterology. 2006;130:1480–1491.

    Article  PubMed  Google Scholar 

  10. Rome Foundation. Guidelines—Rome III diagnostic criteria for functional gastrointestinal disorders. J Gastrointestin Liver Dis. 2006;15:307–312.

  11. Kruis W, Thieme C, Weinzierl M, Schussler P, Holl J, Paulus W. A diagnostic score for the irritable bowel syndrome. Its value in the exclusion of organic disease. Gastroenterology. 1984;87:1–7.

    CAS  PubMed  Google Scholar 

  12. Manning AP, Thompson WG, Heaton KW, Morris AF. Towards positive diagnosis of the irritable bowel. Br Med J. 1978;2:653–654.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Pimentel M, Hwang L, Melmed GY, et al. New clinical method for distinguishing D-IBS from other gastrointestinal conditions causing diarrhea: the LA-IBS diagnostic strategy. Dig Dis Sci. 2010;55:145–149.

    Article  PubMed  Google Scholar 

  14. Quigley EM. Small intestinal bacterial overgrowth: what it is and what it is not. Curr Opin Gastroenterol. 2014;30:141–146.

    Article  PubMed  Google Scholar 

  15. Yu D, Cheeseman F, Vanner S. Combined oro-caecal scintigraphy and lactulose hydrogen breath testing demonstrate that breath testing detects oro-caecal transit, not small intestinal bacterial overgrowth in patients with IBS. Gut. 2011;60:334–340.

    Article  PubMed  Google Scholar 

  16. Pimentel M, Chow EJ, Lin HC. Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am J Gastroenterol. 2000;95:3503–3506.

    Article  CAS  PubMed  Google Scholar 

  17. Pimentel M, Chow EJ, Lin HC. Normalization of lactulose breath testing correlates with symptom improvement in irritable bowel syndrome. A double-blind, randomized, placebo-controlled study. Am J Gastroenterol. 2003;98:412–419.

    PubMed  Google Scholar 

  18. Lupascu A, Gabrielli M, Lauritano EC, et al. Hydrogen glucose breath test to detect small intestinal bacterial overgrowth: a prevalence case-control study in irritable bowel syndrome. Aliment Pharmacol Ther. 2005;22:1157–1160.

    Article  CAS  PubMed  Google Scholar 

  19. Cuoco L, Salvagnini M. Small intestine bacterial overgrowth in irritable bowel syndrome: a retrospective study with rifaximin. Minerva Gastroenterol Dietol. 2006;52:89–95.

    CAS  PubMed  Google Scholar 

  20. Majewski M, McCallum RW. Results of small intestinal bacterial overgrowth testing in irritable bowel syndrome patients: clinical profiles and effects of antibiotic trial. Adv Med Sci. 2007;52:139–142.

    CAS  PubMed  Google Scholar 

  21. Posserud I, Stotzer PO, Bjornsson ES, Abrahamsson H, Simren M. Small intestinal bacterial overgrowth in patients with irritable bowel syndrome. Gut. 2007;56:802–808.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Pyleris E, Giamarellos-Bourboulis EJ, Tzivras D, Koussoulas V, Barbatzas C, Pimentel M. The prevalence of overgrowth by aerobic bacteria in the small intestine by small bowel culture: relationship with irritable bowel syndrome. Dig Dis Sci. 2012;57:1321–1329.

    Article  PubMed  Google Scholar 

  23. Pimentel M, Lembo A, Chey WD, et al. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med. 2011;364:22–32.

    Article  CAS  PubMed  Google Scholar 

  24. Spiller RC, Jenkins D, Thornley JP, et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut. 2000;47:804–811.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Mearin F, Perez-Oliveras M, Perello A, et al. Dyspepsia and irritable bowel syndrome after a salmonella gastroenteritis outbreak: one-year follow-up cohort study. Gastroenterology. 2005;129:98–104.

    Article  PubMed  Google Scholar 

  26. Okhuysen PC, Jiang ZD, Carlin L, Forbes C, DuPont HL. Post-diarrhea chronic intestinal symptoms and irritable bowel syndrome in North American travelers to Mexico. Am J Gastroenterol. 2004;99:1774–1778.

    Article  PubMed  Google Scholar 

  27. Ji S, Park H, Lee D, Song YK, Choi JP, Lee SI. Post-infectious irritable bowel syndrome in patients with shigella infection. J Gastroenterol Hepatol. 2005;20:381–386.

    Article  PubMed  Google Scholar 

  28. Halvorson HA, Schlett CD, Riddle MS. Postinfectious irritable bowel syndrome—a meta-analysis. Am J Gastroenterol. 2006;101:1894–1899. quiz 1942.

    Article  PubMed  Google Scholar 

  29. Thabane M, Kottachchi DT, Marshall JK. Systematic review and meta-analysis: the incidence and prognosis of post-infectious irritable bowel syndrome. Aliment Pharmacol Ther. 2007;26:535–544.

    Article  CAS  PubMed  Google Scholar 

  30. Tauxe RV. Epidemiology of Campylobacter jejuni infections in the united states and other industrialized nations. In: Nachamkin I, Blaser MJ, Tompkins LS, eds. Campylobacter jejuni: Current and Future Trends. Washington: American Society for Microbiology; 1992:9–12.

    Google Scholar 

  31. Pimentel M, Chatterjee S, Chang C, et al. A new rat model links two contemporary theories in irritable bowel syndrome. Dig Dis Sci. 2008;53:982–989.

    Article  PubMed  Google Scholar 

  32. Vantrappen G, Janssens J, Hellemans J, Ghoos Y. The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. J Clin Invest. 1977;59:1158–1166.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Pimentel M, Soffer EE, Chow EJ, Kong Y, Lin HC. Lower frequency of MMC is found in IBS subjects with abnormal lactulose breath test, suggesting bacterial overgrowth. Dig Dis Sci. 2002;47:2639–2643.

    Article  CAS  PubMed  Google Scholar 

  34. Nieuwenhuijs VB, Verheem A, van Duijvenbode-Beumer H, et al. The role of interdigestive small bowel motility in the regulation of gut microflora, bacterial overgrowth, and bacterial translocation in rats. Ann Surg. 1998;228:188–193.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Jee SR, Morales W, Low K, et al. ICC density predicts bacterial overgrowth in a rat model of post-infectious IBS. World J Gastroenterol. 2010;16:3680–3686.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Pokkunuri V, Pimentel M, Morales W, et al. Role of cytolethal distending toxin in altered stool form and bowel phenotypes in a rat model of post-infectious irritable bowel syndrome. J Neurogastroenterol Motil. 2012;18:434–442.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Sung J, Morales W, Kim G, et al. Effect of repeated Campylobacter jejuni infection on gut flora and mucosal defense in a rat model of post infectious functional and microbial bowel changes. Neurogastroenterol Motil. 2013;25:529–537.

    Article  CAS  PubMed  Google Scholar 

  38. Der-Silaphet T, Malysz J, Hagel S, Larry Arsenault A, Huizinga JD. Interstitial cells of Cajal direct normal propulsive contractile activity in the mouse small intestine. Gastroenterology. 1998;114:724–736.

    Article  CAS  PubMed  Google Scholar 

  39. Malysz J, Thuneberg L, Mikkelsen HB, Huizinga JD. Action potential generation in the small intestine of w mutant mice that lack interstitial cells of Cajal. Am J Physiol. 1996;271:G387–G399.

    CAS  PubMed  Google Scholar 

  40. Langton P, Ward SM, Carl A, Norell MA, Sanders KM. Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon. Proc Natl Acad Sci USA. 1989;86:7280–7284.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ordog T, Ward SM, Sanders KM. Interstitial cells of Cajal generate electrical slow waves in the murine stomach. J Physiol. 1999;518:257–269.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Streutker CJ, Huizinga JD, Campbell F, Ho J, Riddell RH. Loss of cd117 (c-kit)- and cd34-positive ICC and associated cd34-positive fibroblasts defines a subpopulation of chronic intestinal pseudo-obstruction. Am J Surg Pathol. 2003;27:228–235.

    Article  CAS  PubMed  Google Scholar 

  43. Vanderwinden JM, Liu H, De Laet MH, Vanderhaeghen JJ. Study of the interstitial cells of Cajal in infantile hypertrophic pyloric stenosis. Gastroenterology. 1996;111:279–288.

    Article  CAS  PubMed  Google Scholar 

  44. Ordog T, Takayama I, Cheung WK, Ward SM, Sanders KM. Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis. Diabetes. 2000;49:1731–1739.

    Article  CAS  PubMed  Google Scholar 

  45. Bassotti G, Villanacci V, Maurer CA, et al. The role of glial cells and apoptosis of enteric neurones in the neuropathology of intractable slow transit constipation. Gut. 2006;55:41–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM. C-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 1995;280:97–111.

    CAS  PubMed  Google Scholar 

  47. Marshall JK, Thabane M, Garg AX, Clark WF, Salvadori M, Collins SM. Incidence and epidemiology of irritable bowel syndrome after a large waterborne outbreak of bacterial dysentery. Gastroenterology. 2006;131:445–450. quiz 660.

    Article  PubMed  Google Scholar 

  48. Shah ED, Riddle MS, Chang C, Pimentel M. Estimating the contribution of acute gastroenteritis to the overall prevalence of irritable bowel syndrome. J Neurogastroenterol Motil. 2012;18:200–204.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Qin HY, Wu JC, Tong XD, Sung JJ, Xu HX, Bian ZX. Systematic review of animal models of post-infectious/post-inflammatory irritable bowel syndrome. J Gastroenterol. 2011;46:164–174.

    Article  PubMed  Google Scholar 

  50. Wood JD, Liu S, Drossman DA, Ringel Y, Whitehead W. Anti-enteric neuronal antibodies and the irritable bowel syndrome. J Neurogastroenterol Motil. 2012;18:78–85.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Peng X, Cuff LE, Lawton CD, DeMali KA. Vinculin regulates cell-surface e-cadherin expression by binding to beta-catenin. J Cell Sci. 2010;123:567–577.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Peng X, Nelson ES, Maiers JL, DeMali KA. New insights into vinculin function and regulation. Int Rev Cell Mol Biol. 2011;287:191–231.

    Article  CAS  PubMed  Google Scholar 

  53. Demali KA. Vinculin—a dynamic regulator of cell adhesion. Trends Biochem Sci. 2004;29:565–567.

    Article  CAS  PubMed  Google Scholar 

  54. Shen K, Tolbert CE, Guilluy C, et al. The vinculin c-terminal hairpin mediates f-actin bundle formation, focal adhesion, and cell mechanical properties. J Biol Chem. 2011;286:45103–45115.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Zemljic-Harpf AE, Ponrartana S, Avalos RT, et al. Heterozygous inactivation of the vinculin gene predisposes to stress-induced cardiomyopathy. Am J Pathol. 2004;165:1033–1044.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Varon C, Mocan I, Mihi B, et al. Helicobacter pullorum cytolethal distending toxin targets vinculin and cortactin and triggers formation of lamellipodia in intestinal epithelial cells. J Infect Dis. 2014;209:588–599.

    Article  CAS  PubMed  Google Scholar 

  57. Izard T, Tran Van Nhieu G, Bois PR. Shigella applies molecular mimicry to subvert vinculin and invade host cells. J Cell Biol. 2006;175:465–475.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Park H, Lee JH, Gouin E, Cossart P, Izard T. The rickettsia surface cell antigen 4 applies mimicry to bind to and activate vinculin. J Biol Chem. 2011;286:35096–35103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The antibody to the near-full-length CdtB protein used in this study was provided by Dr. Patricia Guerry (Naval Medical Research Center, Silver Spring, MD), and the recombinant CdtB protein used in this study was provided by Dr. Kenneth Bradley, MIMG Department, UCLA. This work was supported by grants from the Beatrice and Samuel A. Seaver Foundation (MP), the Shoolman Foundation (MP) and the Hansch Family Fund (MP), and by RO1 DK080684 (SS) and a VA-MERIT award (SS).

Conflict of interest

Mark Pimentel has received grants from and is a consultant for Salix Pharmaceuticals and Commonwealth Laboratories, with whom Cedars-Sinai has licensing agreements. The remaining authors have no conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Pimentel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4982 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimentel, M., Morales, W., Pokkunuri, V. et al. Autoimmunity Links Vinculin to the Pathophysiology of Chronic Functional Bowel Changes Following Campylobacter jejuni Infection in a Rat Model. Dig Dis Sci 60, 1195–1205 (2015). https://doi.org/10.1007/s10620-014-3435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3435-5

Keywords

Navigation