Skip to main content

Advertisement

Log in

Establishing a Biological Profile for Interval Colorectal Cancers

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) remains the second leading cause of cancer-related deaths in North America. Screening for CRC and its precursor lesions is highly effective in reducing the incidence and deaths due to the disease. However, there remain a substantial number of individuals who are diagnosed with CRC soon after a negative/clearing colonoscopy with no documented evidence of CRC. The occurrence of these interval CRCs (I-CRCs) reduces the effectiveness of CRC screening and detection tests and has only recently attracted wide spread attention. I-CRCs can be subdivided into those that occur most likely due to the failure of the colonoscopy examination (missed CRC and CRC that developed from missed or incompletely resected precursor lesions) and those that develop rapidly after the colonoscopy (de novo I-CRCs). In this review, we discuss the current literature and present both the clinical and biological factors that have been identified to account for I-CRCs, with a particular focus on the aberrant molecular features that are candidate causative agents for I-CRCs. We conclude additional studies are required to fully understand the molecular features that lead to the development of I-CRCs, which in turn is essential to develop measures to prevent the occurrence of this group of CRCs and thereby improve CRC screening and detection strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Canadian Cancer Society’s Advisory Committee on Cancer Statistics. Canadian cancer statistics 2013. Toronto, ON: Canadian Cancer Society; 2013.

    Google Scholar 

  2. American Cancer Society. Cancer facts and figures 2014. Atlanta: American Cancer Society; 2014.

    Google Scholar 

  3. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–2460.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Hewitson P, Glasziou P, Watson E, Towler B, Irwig L. Cochrane systematic review of colorectal cancer screening using the fecal occult blood test (hemoccult): an update. Am J Gastroenterol. 2008;103:1541–1549.

    PubMed  Google Scholar 

  5. Elmunzer BJ, Hayward RA, Schoenfeld PS, Saini SD, Deshpande A, Waljee AK. Effect of flexible sigmoidoscopy-based screening on incidence and mortality of colorectal cancer: a systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2012;9:e1001352.

    PubMed  PubMed Central  Google Scholar 

  6. Meissner HI, Breen N, Klabunde CN, Vernon SW. Patterns of colorectal cancer screening uptake among men and women in the United States. Cancer Epidemiol Biomarkers Prev. 2006;15:389–394.

    PubMed  Google Scholar 

  7. Leddin D, Hunt R, Champion M, et al. Canadian Association of Gastroenterology and the Canadian Digestive Health Foundation: guidelines on colon cancer screening. Can J Gastroenterol. 2004;18:93–99.

    PubMed  Google Scholar 

  8. Ferrucci JT. Colonoscopy and barium enema: radiologist’s response. Gastroenterology. 1997;112:294–297.

    PubMed  CAS  Google Scholar 

  9. Pabby A, Schoen RE, Weissfeld JL, et al. Analysis of colorectal cancer occurrence during surveillance colonoscopy in the dietary Polyp Prevention Trial. Gastrointest Endosc. 2005;61:385–391.

    PubMed  Google Scholar 

  10. Leaper M, Johnston MJ, Barclay M, Dobbs BR, Frizelle FA. Reasons for failure to diagnose colorectal carcinoma at colonoscopy. Endoscopy. 2004;36:499–503.

    PubMed  CAS  Google Scholar 

  11. Gorski TF, Rosen L, Riether R, Stasik J, Khubchandani I. Colorectal cancer after surveillance colonoscopy: false-negative examination or fast growth? Dis Colon Rectum. 1999;42:877–880.

    PubMed  CAS  Google Scholar 

  12. Hosokawa O, Shirasaki S, Kaizaki Y, Hayashi H, Douden K, Hattori M. Invasive colorectal cancer detected up to 3 years after a colonoscopy negative for cancer. Endoscopy. 2003;35:506–510.

    PubMed  CAS  Google Scholar 

  13. Robertson DJ. Interval cancer after total colonoscopy: results from a pooled analysis of eight studies. Gastroenterology. 2008;134:A-111–A-112.

    Google Scholar 

  14. Pohl H, Robertson DJ. Colorectal cancers detected after colonoscopy frequently result from missed lesions. Clin Gastroenterol Hepatol. 2010;8:858–864.

    PubMed  Google Scholar 

  15. Arain MA, Sawhney M, Sheikh S, et al. CIMP status of interval colon cancers: another piece to the puzzle. Am J Gastroenterol. 2010;105:1189–1195.

    PubMed  Google Scholar 

  16. Sawhney MS, Farrar WD, Gudiseva S, et al. Microsatellite instability in interval colon cancers. Gastroenterology. 2006;131:1700–1705.

    PubMed  Google Scholar 

  17. Shaukat A, Arain M, Anway R, Manaktala S, Pohlman L, Thyagarajan B. Is KRAS mutation associated with interval colorectal cancers? Dig Dis Sci. 2012;57:913–917.

    PubMed  CAS  Google Scholar 

  18. Kaminski MF, Regula J, Kraszewska E, et al. Quality indicators for colonoscopy and the risk of interval cancer. N Engl J Med. 2010;362:1795–1803.

    PubMed  CAS  Google Scholar 

  19. Brenner H, Chang-Claude J, Seiler CM, Hoffmeister M. Interval cancers after negative colonoscopy: population-based case-control study. Gut. 2012;61:1576–1582.

    PubMed  Google Scholar 

  20. Bressler B, Paszat LF, Chen Z, Rothwell DM, Vinden C, Rabeneck L. Rates of new or missed colorectal cancers after colonoscopy and their risk factors: a population-based analysis. Gastroenterology. 2007;132:96–102.

    PubMed  Google Scholar 

  21. le Clercq CM, Bouwens MW, Rondagh EJ et al. Postcolonoscopy colorectal cancers are preventable: a population-based study. Gut. 2014;63:957–963.

  22. Singh H, Nugent Z, Demers AA, Bernstein CN. Rate and predictors of early/missed colorectal cancers after colonoscopy in Manitoba: a population-based study. Am J Gastroenterol. 2010;105:2588–2596.

    PubMed  Google Scholar 

  23. Singh H, Turner D, Xue L, Targownik LE, Bernstein CN. Risk of developing colorectal cancer following a negative colonoscopy examination: evidence for a 10-year interval between colonoscopies. JAMA. 2006;295:2366–2373.

    PubMed  CAS  Google Scholar 

  24. Steele RJ, McClements P, Watling C, et al. Interval cancers in a FOBT-based colorectal cancer population screening programme: implications for stage, gender and tumour site. Gut. 2012;61:576–581.

    PubMed  CAS  Google Scholar 

  25. Bosman FT, Carneiro F, Hruban RH, Theise ND. World Health Organization classification of tumours of the digestive system. Lyon: International Agency for Research on Cancer (IARC); 2010.

    Google Scholar 

  26. Iacopetta B. Are there two sides to colorectal cancer? Int J Cancer. 2002;101:403–408.

    PubMed  CAS  Google Scholar 

  27. Shamsuddin AM, Phelps PC, Trump BF. Human large intestinal epithelium: light microscopy, histochemistry, and ultrastructure. Hum Pathol. 1982;13:790–803.

    PubMed  CAS  Google Scholar 

  28. Arai T, Kino I. Morphometrical and cell kinetic studies of normal human colorectal mucosa. Comparison between the proximal and the distal large intestine. Acta Pathol Jpn. 1989;39:725–730.

    PubMed  CAS  Google Scholar 

  29. Stang A, Kluttig A. Etiologic insights from surface adjustment of colorectal carcinoma incidences: an analysis of the U.S. SEER data 2000–2004. Am J Gastroenterol. 2008;103:2853–2861.

    PubMed  Google Scholar 

  30. Fayad NF, Kahi CJ. Quality measures for colonoscopy: a critical evaluation. Clin Gastroenterol Hepatol. 2014 (in press).

  31. Rex DK, Petrini JL, Baron TH, et al. Quality indicators for colonoscopy. Am J Gastroenterol. 2006;101:873–885.

    PubMed  Google Scholar 

  32. Goncalves AR, Ferreira C, Marques A, Ribeiro LC, Velosa J. Assessment of quality in screening colonoscopy for colorectal cancer. Clin Exp Gastroenterol. 2011;4:277–281.

    PubMed  PubMed Central  Google Scholar 

  33. Cirocco WC, Rusin LC. Confirmation of cecal intubation during colonoscopy. Dis Colon Rectum. 1995;38:402–406.

    PubMed  CAS  Google Scholar 

  34. Harewood GC, Sharma VK, de Garmo P. Impact of colonoscopy preparation quality on detection of suspected colonic neoplasia. Gastrointest Endosc. 2003;58:76–79.

    PubMed  Google Scholar 

  35. Froehlich F, Wietlisbach V, Gonvers JJ, Burnand B, Vader JP. Impact of colonic cleansing on quality and diagnostic yield of colonoscopy: the European Panel of Appropriateness of Gastrointestinal Endoscopy European multicenter study. Gastrointest Endosc. 2005;61:378–384.

    PubMed  Google Scholar 

  36. Haseman JH, Lemmel GT, Rahmani EY, Rex DK. Failure of colonoscopy to detect colorectal cancer: evaluation of 47 cases in 20 hospitals. Gastrointest Endosc. 1997;45:451–455.

    PubMed  CAS  Google Scholar 

  37. Rex DK, Rahmani EY, Haseman JH, Lemmel GT, Kaster S, Buckley JS. Relative sensitivity of colonoscopy and barium enema for detection of colorectal cancer in clinical practice. Gastroenterology. 1997;112:17–23.

    PubMed  CAS  Google Scholar 

  38. Singh H, Demers AA. Quality indicators for colonoscopy and the risk of interval cancer. N Engl J Med. 2010;363:1371–1372; author reply 1373.

  39. Singh H, Nugent Z, Mahmud SM, Demers AA, Bernstein CN. Predictors of colorectal cancer after negative colonoscopy: a population-based study. Am J Gastroenterol. 2010;105:663–673; quiz 674.

  40. Farrar WD, Sawhney MS, Nelson DB, Lederle FA, Bond JH. Colorectal cancers found after a complete colonoscopy. Clin Gastroenterol Hepatol. 2006;4:1259–1264.

    PubMed  Google Scholar 

  41. Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology. 2010;138:2088–2100.

    PubMed  CAS  Google Scholar 

  42. Snover DC. Sessile serrated adenoma/polyp of the large intestine: a potentially aggressive lesion in need of a new screening strategy. Dis Colon Rectum. 2011;54:1205–1206.

    PubMed  Google Scholar 

  43. O’Brien MJ, Yang S, Mack C, et al. Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points. Am J Surg Pathol. 2006;30:1491–1501.

    PubMed  Google Scholar 

  44. Hetzel JT, Huang CS, Coukos JA, et al. Variation in the detection of serrated polyps in an average risk colorectal cancer screening cohort. Am J Gastroenterol. 2010;105:2656–2664.

    PubMed  Google Scholar 

  45. Torlakovic E, Snover DC. Serrated adenomatous polyposis in humans. Gastroenterology. 1996;110:748–755.

    PubMed  CAS  Google Scholar 

  46. Torlakovic E, Skovlund E, Snover DC, Torlakovic G, Nesland JM. Morphologic reappraisal of serrated colorectal polyps. Am J Surg Pathol. 2003;27:65–81.

    PubMed  Google Scholar 

  47. Spring KJ, Zhao ZZ, Karamatic R, et al. High prevalence of sessile serrated adenomas with BRAF mutations: a prospective study of patients undergoing colonoscopy. Gastroenterology. 2006;131:1400–1407.

    PubMed  CAS  Google Scholar 

  48. Kim KM, Lee EJ, Ha S, et al. Molecular features of colorectal hyperplastic polyps and sessile serrated adenoma/polyps from Korea. Am J Surg Pathol. 2011;35:1274–1286.

    PubMed  Google Scholar 

  49. Mohammadi M, Kristensen MH, Nielsen HJ, Bonde JH, Holck S. Qualities of sessile serrated adenoma/polyp/lesion and its borderline variant in the context of synchronous colorectal carcinoma. J Clin Pathol. 2012;65:924–927.

    PubMed  CAS  Google Scholar 

  50. Kambara T, Simms LA, Whitehall VL, et al. BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut. 2004;53:1137–1144.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Fujita K, Yamamoto H, Matsumoto T, et al. Sessile serrated adenoma with early neoplastic progression: a clinicopathologic and molecular study. Am J Surg Pathol. 2011;35:295–304.

    PubMed  Google Scholar 

  52. Maeda T, Suzuki K, Togashi K, et al. Sessile serrated adenoma shares similar genetic and epigenetic features with microsatellite unstable colon cancer in a location-dependent manner. Exp Ther Med. 2011;2:695–700.

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Shaukat A, Arain M, Thaygarajan B, Bond JH, Sawhney M. Is BRAF mutation associated with interval colorectal cancers? Dig Dis Sci. 2010;55:2352–2356.

    PubMed  CAS  Google Scholar 

  54. Brenner H, Chang-Claude J, Seiler CM, Sturmer T, Hoffmeister M. Does a negative screening colonoscopy ever need to be repeated? Gut. 2006;55:1145–1150.

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Shen L, Toyota M, Kondo Y, et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci USA. 2007;104:18654–18659.

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Trautmann K, Terdiman JP, French AJ, et al. Chromosomal instability in microsatellite-unstable and stable colon cancer. Clin Cancer Res. 2006;12:6379–6385.

    PubMed  CAS  Google Scholar 

  57. Cheng YW, Pincas H, Bacolod MD, et al. CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer. Clin Cancer Res. 2008;14:6005–6013.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Rajagopalan H, Nowak MA, Vogelstein B, Lengauer C. The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer. 2003;3:695–701.

    PubMed  CAS  Google Scholar 

  59. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;386:623–627.

    PubMed  CAS  Google Scholar 

  60. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–532.

    PubMed  CAS  Google Scholar 

  61. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology. 2010;138:2059–2072.

    PubMed  CAS  Google Scholar 

  62. Rowan A, Halford S, Gaasenbeek M, et al. Refining molecular analysis in the pathways of colorectal carcinogenesis. Clin Gastroenterol Hepatol. 2005;3:1115–1123.

    PubMed  CAS  Google Scholar 

  63. Barber TD, McManus K, Yuen KW, et al. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci USA. 2008;105:3443–3448.

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–767.

    PubMed  CAS  Google Scholar 

  65. Lurje G, Zhang W, Lenz HJ. Molecular prognostic markers in locally advanced colon cancer. Clin Colorectal Cancer. 2007;6:683–690.

    PubMed  CAS  Google Scholar 

  66. Choi SW, Lee KJ, Bae YA, et al. Genetic classification of colorectal cancer based on chromosomal loss and microsatellite instability predicts survival. Clin Cancer Res. 2002;8:2311–2322.

    PubMed  CAS  Google Scholar 

  67. Watanabe T, Kobunai T, Yamamoto Y, et al. Chromosomal instability (CIN) phenotype, CIN high or CIN low, predicts survival for colorectal cancer. J Clin Oncol. 2012;30:2256–2264.

    PubMed  Google Scholar 

  68. Walther A, Houlston R, Tomlinson I. Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut. 2008;57:941–950.

    PubMed  CAS  Google Scholar 

  69. Sheffer M, Bacolod MD, Zuk O, et al. Association of survival and disease progression with chromosomal instability: a genomic exploration of colorectal cancer. Proc Natl Acad Sci USA. 2009;106:7131–7136.

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Lee AJ, Endesfelder D, Rowan AJ, et al. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res. 2011;71:1858–1870.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Chang SC, Lin JK, Lin TC, Liang WY. Loss of heterozygosity: an independent prognostic factor of colorectal cancer. World J Gastroenterol. 2005;11:778–784.

    PubMed  CAS  Google Scholar 

  72. Reichmann A, Levin B, Martin P. Human large-bowel cancer: correlation of clinical and histopathological features with banded chromosomes. Int J Cancer. 1982;29:625–629.

    PubMed  CAS  Google Scholar 

  73. Delattre O, Olschwang S, Law DJ, et al. Multiple genetic alterations in distal and proximal colorectal cancer. Lancet. 1989;2:353–356.

    PubMed  CAS  Google Scholar 

  74. Chung DC, Rustgi AK. DNA mismatch repair and cancer. Gastroenterology. 1995;109:1685–1699.

    PubMed  CAS  Google Scholar 

  75. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138:2073–2087, e2073.

  76. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363:558–561.

    PubMed  CAS  Google Scholar 

  77. Peltomaki P. Lynch syndrome genes. Fam Cancer. 2005;4:227–232.

    PubMed  Google Scholar 

  78. Vilar E, Gruber SB. Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol. 2010;7:153–162.

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. 2006;7:335–346.

    PubMed  CAS  Google Scholar 

  80. Salovaara R, Loukola A, Kristo P, et al. Population-based molecular detection of hereditary nonpolyposis colorectal cancer. J Clin Oncol. 2000;18:2193–2200.

    PubMed  CAS  Google Scholar 

  81. Peel DJ, Ziogas A, Fox EA, et al. Characterization of hereditary nonpolyposis colorectal cancer families from a population-based series of cases. J Natl Cancer Inst. 2000;92:1517–1522.

    PubMed  CAS  Google Scholar 

  82. Cunningham JM, Christensen ER, Tester DJ, et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 1998;58:3455–3460.

    PubMed  CAS  Google Scholar 

  83. Kuismanen SA, Holmberg MT, Salovaara R, de la Chapelle A, Peltomaki P. Genetic and epigenetic modification of MLH1 accounts for a major share of microsatellite-unstable colorectal cancers. Am J Pathol. 2000;156:1773–1779.

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Herman JG, Umar A, Polyak K, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA. 1998;95:6870–6875.

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Kane MF, Loda M, Gaida GM, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57:808–811.

    PubMed  CAS  Google Scholar 

  86. Gafa R, Maestri I, Matteuzzi M, et al. Sporadic colorectal adenocarcinomas with high-frequency microsatellite instability. Cancer. 2000;89:2025–2037.

    PubMed  CAS  Google Scholar 

  87. Elsaleh H, Joseph D, Grieu F, Zeps N, Spry N, Iacopetta B. Association of tumour site and sex with survival benefit from adjuvant chemotherapy in colorectal cancer. Lancet. 2000;355:1745–1750.

    PubMed  CAS  Google Scholar 

  88. Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349:247–257.

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Wright CM, Dent OF, Barker M, et al. Prognostic significance of extensive microsatellite instability in sporadic clinicopathological stage C colorectal cancer. Br J Surg. 2000;87:1197–1202.

    PubMed  CAS  Google Scholar 

  90. Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260:816–819.

    PubMed  CAS  Google Scholar 

  91. Bubb VJ, Curtis LJ, Cunningham C, et al. Microsatellite instability and the role of hMSH2 in sporadic colorectalcancer. Oncogene. 1996;12:2641–2649.

    PubMed  CAS  Google Scholar 

  92. Guastadisegni C, Colafranceschi M, Ottini L, Dogliotti E. Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data. Eur J Cancer. 2010;46:2788–2798.

    PubMed  CAS  Google Scholar 

  93. Vilkin A, Niv Y, Nagasaka T, et al. Microsatellite instability, MLH1 promoter methylation, and BRAF mutation analysis in sporadic colorectal cancers of different ethnic groups in Israel. Cancer. 2009;115:760–769.

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Sugai T, Habano W, Jiao YF, et al. Analysis of molecular alterations in left- and right-sided colorectal carcinomas reveals distinct pathways of carcinogenesis: proposal for new molecular profile of colorectal carcinomas. J Mol Diagn. 2006;8:193–201.

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Breivik J, Lothe RA, Meling GI, Rognum TO, Borresen-Dale AL, Gaudernack G. Different genetic pathways to proximal and distal colorectal cancer influenced by sex-related factors. Int J Cancer. 1997;74:664–669.

    PubMed  CAS  Google Scholar 

  96. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396:643–649.

    PubMed  CAS  Google Scholar 

  97. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321:209–213.

    PubMed  CAS  Google Scholar 

  98. Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004;4:988–993.

    PubMed  CAS  Google Scholar 

  99. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999;96:8681–8686.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Curtin K, Slattery ML, Samowitz WS. CpG island methylation in colorectal cancer: past, present and future. Patholog Res Int. 2011;2011:902674.

    PubMed  PubMed Central  Google Scholar 

  101. Issa JP, Vertino PM, Wu J, et al. Increased cytosine DNA-methyltransferase activity during colon cancer progression. J Natl Cancer Inst. 1993;85:1235–1240.

    PubMed  CAS  Google Scholar 

  102. Easwaran HP, Van Neste L, Cope L, et al. Aberrant silencing of cancer-related genes by CpG hypermethylation occurs independently of their spatial organization in the nucleus. Cancer Res. 2010;70:8015–8024.

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet. 2007;16:R50–R59.

    PubMed  CAS  Google Scholar 

  104. Park SJ, Rashid A, Lee JH, Kim SG, Hamilton SR, Wu TT. Frequent CpG island methylation in serrated adenomas of the colorectum. Am J Pathol. 2003;162:815–822.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Kim YS, Deng G. Epigenetic changes (aberrant DNA methylation) in colorectal neoplasia. Gut Liver. 2007;1:1–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135:1079–1099.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Samowitz WS, Albertsen H, Herrick J, et al. Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology. 2005;129:837–845.

    PubMed  CAS  Google Scholar 

  108. Ward RL, Cheong K, Ku SL, Meagher A, O’Connor T, Hawkins NJ. Adverse prognostic effect of methylation in colorectal cancer is reversed by microsatellite instability. J Clin Oncol. 2003;21:3729–3736.

    PubMed  CAS  Google Scholar 

  109. Nishihara R, Wu K, Lochhead P, et al. Long-term colorectal-cancer incidence and mortality after lower endoscopy. N Engl J Med. 2013;369:1095–1105.

    PubMed  CAS  Google Scholar 

  110. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418:934.

    PubMed  CAS  Google Scholar 

  111. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J. 2000;351:289–305.

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Yuen ST, Davies H, Chan TL, et al. Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res. 2002;62:6451–6455.

    PubMed  CAS  Google Scholar 

  113. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–954.

    PubMed  CAS  Google Scholar 

  114. Samowitz WS, Sweeney C, Herrick J, et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005;65:6063–6069.

    PubMed  CAS  Google Scholar 

  115. Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–793.

    PubMed  CAS  Google Scholar 

  116. Wang L, Cunningham JM, Winters JL, et al. BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res. 2003;63:5209–5212.

    PubMed  CAS  Google Scholar 

  117. Nagasaka T, Sasamoto H, Notohara K, et al. Colorectal cancer with mutation in BRAF, KRAS, and wild-type with respect to both oncogenes showing different patterns of DNA methylation. J Clin Oncol. 2004;22:4584–4594.

    PubMed  CAS  Google Scholar 

  118. Liu X, Jakubowski M, Hunt JL. KRAS gene mutation in colorectal cancer is correlated with increased proliferation and spontaneous apoptosis. Am J Clin Pathol. 2011;135:245–252.

    PubMed  CAS  Google Scholar 

  119. Oliveira C, Westra JL, Arango D, et al. Distinct patterns of KRAS mutations in colorectal carcinomas according to germline mismatch repair defects and hMLH1 methylation status. Hum Mol Genet. 2004;13:2303–2311.

    PubMed  CAS  Google Scholar 

  120. Samowitz WS, Holden JA, Curtin K, et al. Inverse relationship between microsatellite instability and K-ras and p53 gene alterations in colon cancer. Am J Pathol. 2001;158:1517–1524.

    PubMed  CAS  PubMed Central  Google Scholar 

  121. Iacopetta BJ, Welch J, Soong R, House AK, Zhou XP, Hamelin R. Mutation of the transforming growth factor-beta type II receptor gene in right-sided colorectal cancer: relationship to clinicopathological features and genetic alterations. J Pathol. 1998;184:390–395.

    PubMed  CAS  Google Scholar 

  122. Konishi M, Kikuchi-Yanoshita R, Tanaka K, et al. Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer. Gastroenterology. 1996;111:307–317.

    PubMed  CAS  Google Scholar 

  123. Olschwang S, Hamelin R, Laurent-Puig P, et al. Alternative genetic pathways in colorectal carcinogenesis. Proc Natl Acad Sci USA. 1997;94:12122–12127.

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Kawabata Y, Tomita N, Monden T, et al. Molecular characteristics of poorly differentiated adenocarcinoma and signet-ring-cell carcinoma of colorectum. Int J Cancer. 1999;84:33–38.

    PubMed  CAS  Google Scholar 

  125. O’Brien MJ, Yang S, Clebanoff JL, et al. Hyperplastic (serrated) polyps of the colorectum: relationship of CpG island methylator phenotype and K-ras mutation to location and histologic subtype. Am J Surg Pathol. 2004;28:423–434.

    PubMed  Google Scholar 

  126. Martinez ME, Baron JA, Lieberman DA, et al. A pooled analysis of advanced colorectal neoplasia diagnoses after colonoscopic polypectomy. Gastroenterology. 2009;136:832–841.

    PubMed  PubMed Central  Google Scholar 

  127. Robertson DJ, Greenberg ER, Beach M, et al. Colorectal cancer in patients under close colonoscopic surveillance. Gastroenterology. 2005;129:34–41.

    PubMed  Google Scholar 

  128. Lieberman DA, Weiss DG, Harford WV, et al. Five-year colon surveillance after screening colonoscopy. Gastroenterology. 2007;133:1077–1085.

    PubMed  Google Scholar 

  129. Kim YH, Kakar S, Cun L, Deng G, Kim YS. Distinct CpG island methylation profiles and BRAF mutation status in serrated and adenomatous colorectal polyps. Int J Cancer. 2008;123:2587–2593.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the McManus lab for helpful suggestions. We are grateful for operational support from CIHR (MOP 115179), CancerCare Manitoba (KJM/HS) and Colon Cancer Canada (KJM/HS). ALC is a recipient of a Flying Officer George Finkle Scholarship and a GETS award (University of Manitoba). We acknowledge the strong support of the CancerCare Manitoba Foundation.

Conflict of interest

Harminder Singh has consulted to Medial Cancer Screening Ltd., Israel. The authors declare there is no conflict of interest with any financial organizations regarding the material discussed in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk J. McManus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cisyk, A.L., Singh, H. & McManus, K.J. Establishing a Biological Profile for Interval Colorectal Cancers. Dig Dis Sci 59, 2390–2402 (2014). https://doi.org/10.1007/s10620-014-3210-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3210-7

Keywords

Navigation