Skip to main content

Advertisement

Log in

Prognostic Marker MicroRNA-125b Inhibits Tumorigenic Properties of Hepatocellular Carcinoma Cells Via Suppressing Tumorigenic Molecule eIF5A2

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

MicroRNAs (miRNAs) belong to a group of small non-coding RNA with differential expression in tumors, including hepatocellular carcinoma (HCC).

Aim

This study investigates the involvement of miR-125b in HCC.

Methods

Clinical analysis of miR-125b was performed using data derived from miRNA profiling and qPCR. Phenotypic changes of liver cell lines were examined after ectopic miR-125b expression. Lastly, bioinformatics analysis coupled with luciferase reporter assay was used to reveal the cellular target of miR-125b.

Results

A down-regulation of miR-125b was found in HCC tumors and cultured cells. Patients having tumors with ≥twofold reduction in miR-125b compared to adjacent non-tumor tissues contributed to 23 out of 49 HCC cases (46.9 %), while this down-regulation was usually found in patients with tumor venous infiltration and recurrence. miR-125b expression was also negatively correlated with increased serum AFP level and poor overall survival of patients. Ectopic expression of miR-125b led to alleviated tumor phenotypes of HCC cells. Among the 110 bioinformatically predicated candidates, 31 of them negatively correlated with miR-125b in HCC tumors for which one of them named eukaryotic translation initiation factor 5A2 (eIF5A2), known also as a liver oncofetal molecule, was validated to be a direct target of miR-125b in HCC.

Conclusions

This study has evidenced for the negative correlation of tumor miR-125b expression with poor prognosis of HCC patients. Expression of miR-125b can reverse the tumorigenic properties of cultured HCC cells via suppressing the tumorigenic molecule eIF5A2, thus postulating restoration of miR-125b level as a way to counteract liver tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854.

    Article  PubMed  CAS  Google Scholar 

  3. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–531.

    Article  PubMed  CAS  Google Scholar 

  4. Wong CM, Kai AK, Tsang FH. Ng IO Regulation of hepatocarcinogenesis by microRNAs. Front Biosci. 2013;5:49–60.

    Google Scholar 

  5. Huang XH, Wang Q, Chen JS, et al. Bead-based microarray analysis of microRNA expression in hepatocellular carcinoma: miR-338 is downregulated. Hepatol Res. 2009;39:786–794.

    Article  PubMed  CAS  Google Scholar 

  6. Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647–658.

    Article  PubMed  CAS  Google Scholar 

  7. Wong CM, Wong CC, Lee JM, et al. Sequential alterations of microRNA expression in hepatocellular carcinoma development and venous metastasis. Hepatology. 2012;55:1453–1461.

    Article  PubMed  CAS  Google Scholar 

  8. Burchard J, Zhang C, Liu AM, et al. MicroRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol Syst Biol. 2010;6:402.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu AM, Zhang C, Burchard J, et al. Global regulation on microRNA in hepatitis B virus-associated hepatocellular carcinoma. OMICS. 2011;15:187–191.

    Article  PubMed  CAS  Google Scholar 

  10. Luk JM, Burchard J, Zhang C, et al. DLK1-DIO3 genomic imprinted microRNA cluster at 14q32.2 defines a stemlike subtype of hepatocellular carcinoma associated with poor survival. J Biol Chem. 2011;286:30706–30713.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Huang K, Dong S, Li W, Xie Z. The expression and regulation of microRNA-125b in cancers. Acta Biochim Biophys Sin (Shanghai). 2013;45:803–805.

    Article  CAS  Google Scholar 

  12. Jia HY, Wang YX, Yan WT, et al. MicroRNA-125b functions as a tumor suppressor in hepatocellular carcinoma cells. Int J Mol Sci. 2012;13:8762–8774.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Shiiba M, Shinozuka K, Saito K, et al. MicroRNA-125b regulates proliferation and radioresistance of oral squamous cell carcinoma. Br J Cancer. 2013;108:1817–1821.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Lee NP, Tsang FH, Shek FH, et al. Prognostic significance and therapeutic potential of eukaryotic translation initiation factor 5A (eIF5A) in hepatocellular carcinoma. Int J Cancer. 2010;127:968–976.

    Article  PubMed  CAS  Google Scholar 

  15. Caraglia M, Park MH, Wolff EC, Marra M, Abbruzzese A. eIF5A isoforms and cancer: two brothers for two functions? Amino Acids. 2013;44:103–109.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Wang FW, Guan XY, Xie D. Roles of eukaryotic initiation factor 5A2 in human cancer. Int J Biol Sci. 2013;9:1013–1020.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Park MH, Nishimura K, Zanelli CF, Valentini SR. Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids. 2010;38:491–500.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Liu LX, Lee NP, Chan VW, et al. Targeting cadherin-17 inactivates Wnt signaling and inhibits tumor growth in liver carcinoma. Hepatology. 2009;50:1453–1463.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Fatima S, Lee NP, Tsang FH, et al. Dickkopf 4 (DKK4) acts on Wnt/β-catenin pathway via influencing β-catenin in hepatocellular carcinoma. Oncogene. 2012;31:4233–4244.

    Article  PubMed  CAS  Google Scholar 

  20. Zhu R, Wong KF, Lee NP, Lee KF, Luk JM. HNF1α and CDX2 transcriptional factors bind to cadherin-17 (CDH17) gene promoter and modulate its expression in hepatocellular carcinoma. J Cell Biochem. 2010;111:618–626.

    Article  PubMed  CAS  Google Scholar 

  21. Xu MZ, Yao TJ, Lee NP, et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer. 2009;115:4576–4585.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Sung WK, Zheng H, Li S, et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet. 2012;44:765–769.

    Article  PubMed  CAS  Google Scholar 

  23. Hao K, Lamb J, Zhang C, et al. Clinicopathologic and gene expression parameters predict liver cancer prognosis. BMC Cancer. 2011;11:481.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee NP, Leung KW, Cheung N, et al. Comparative proteomic analysis of mouse livers from embryo to adult reveals an association with progression of hepatocellular carcinoma. Proteomics. 2008;8:2136–2149.

    Article  PubMed  CAS  Google Scholar 

  25. Guo X, Wu Y. Hartley RS MicroRNA-125a represses cell growth by targeting HuR in breast cancer. RNA Biol. 2009;6:575–583.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Guan Y, Yao H, Zheng Z, Qiu G, Sun K. MiR-125b targets BCL3 and suppresses ovarian cancer proliferation. Int J Cancer. 2011;128:2274–2283.

    Article  PubMed  CAS  Google Scholar 

  27. Visone R, Pallante P, Vecchione A, et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene. 2007;26:7590–7595.

    Article  PubMed  CAS  Google Scholar 

  28. Henson BJ, Bhattacharjee S, O’Dee DM, Feingold E, Gollin SM. Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Cancer. 2009;48:569–582.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–10518.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Wu N, Xiao L, Zhao X, et al. miR-125b regulates the proliferation of glioblastoma stem cells by targeting E2F2. FEBS Lett. 2012;586:3831–3839.

    Article  PubMed  CAS  Google Scholar 

  31. Cui F, Li X, Zhu X, et al. MiR-125b inhibits tumor growth and promotes apoptosis of cervical cancer cells by targeting phosphoinositide 3-kinase catalytic subunit delta. Cell Physiol Biochem. 2012;30:1310–1318.

    Article  PubMed  CAS  Google Scholar 

  32. Wu D, Ding J, Wang L, et al. MicroRNA-125b inhibits cell migration and invasion by targeting matrix metallopeptidase 13 in bladder cancer. Oncol Lett. 2013;5:829–834.

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104.

    Article  PubMed  CAS  Google Scholar 

  34. Zhao A, Zeng Q, Xie X, et al. MicroRNA-125b induces cancer cell apoptosis through suppression of Bcl-2 expression. J Genet Genomics. 2012;39:29–35.

    Article  PubMed  CAS  Google Scholar 

  35. Gong J, Zhang JP, Li B, et al. MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene. 2013;32:3071–3079.

    Article  PubMed  CAS  Google Scholar 

  36. Bhattacharjya S, Nath S, Ghose J, et al. miR-125b promotes cell death by targeting spindle assembly checkpoint gene MAD1 and modulating mitotic progression. Cell Death Differ. 2013;20:430–442.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Zeng CW, Zhang XJ, Lin KY, et al. Camptothecin induces apoptosis in cancer cells via microRNA-125b-mediated mitochondrial pathways. Mol Pharmacol. 2012;81:578–586.

    Article  PubMed  CAS  Google Scholar 

  38. Tang DJ, Dong SS, Ma NF, et al. Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma. Hepatology. 2010;51:1255–1263.

    Article  PubMed  CAS  Google Scholar 

  39. Guan XY, Sham JS, Tang TC, et al. Isolation of a novel candidate oncogene within a frequently amplified region at 3q26 in ovarian cancer. Cancer Res. 2001;61:3806–3809.

    PubMed  CAS  Google Scholar 

  40. Xie D, Ma NF, Pan ZZ, et al. Overexpression of EIF-5A2 is associated with metastasis of human colorectal carcinoma. Hum Pathol. 2008;39:80–86.

    Article  PubMed  CAS  Google Scholar 

  41. Guan XY, Fung JM, Ma NF, et al. Oncogenic role of eIF-5A2 in the development of ovarian cancer. Cancer Res. 2004;64:4197–4200.

    Article  PubMed  CAS  Google Scholar 

  42. Liang L, Wong CM, Ying Q, et al. MicroRNA-125b suppressed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. Hepatology. 2010;52:1731–1740.

    Article  PubMed  CAS  Google Scholar 

  43. Fan DN, Tsang FH, Tam AH, et al. Histone lysine methyltransferase, suppressor of variegation 3-9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA-125b. Hepatology. 2013;57:637–647.

    Article  PubMed  CAS  Google Scholar 

  44. Kim JK, Noh JH, Jung KH, et al. Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b. Hepatology. 2013;57:1055–1067.

    Article  PubMed  CAS  Google Scholar 

  45. Scott GK, Goga A, Bhaumik D, et al. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem. 2007;282:1479–1486.

    Article  PubMed  CAS  Google Scholar 

  46. Hofmann MH, Heinrich J, Radziwill G, Moelling K. A short hairpin DNA analogous to miR-125b inhibits C-Raf expression, proliferation, and survival of breast cancer cells. Mol Cancer Res. 2009;7:1635–1644.

    Article  PubMed  CAS  Google Scholar 

  47. Komagata S, Nakajima M, Takagi S, et al. Human CYP24 catalyzing the inactivation of calcitriol is post-transcriptionally regulated by miR-125b. Mol Pharmacol. 2009;76:702–709.

    Article  PubMed  CAS  Google Scholar 

  48. Huang L, Luo J, Cai Q, et al. MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer. 2011;128:1758–1769.

    Article  PubMed  CAS  Google Scholar 

  49. Xia HF, He TZ, Liu CM, et al. MiR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting Bmf. Cell Physiol Biochem. 2009;23:347–358.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikki P. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsang, F.H., Au, V., Lu, WJ. et al. Prognostic Marker MicroRNA-125b Inhibits Tumorigenic Properties of Hepatocellular Carcinoma Cells Via Suppressing Tumorigenic Molecule eIF5A2. Dig Dis Sci 59, 2477–2487 (2014). https://doi.org/10.1007/s10620-014-3184-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3184-5

Keywords

Navigation