Skip to main content

Advertisement

Log in

Association of Gankyrin and Stemness Factor Expression in Human Colorectal Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

It is widely accepted that the adenoma-carcinoma sequence represents the process by which most colorectal cancers (CRCs) arise. Although gankyrin is overexpressed in CRC tissues, its roles in the initiation step of colorectal carcinogenesis remain largely unexplored.

Aim

We investigated the expression of gankyrin and stemness factors in human colorectal adenomas, precancerous lesions, as well as CRC tissues to assess its involvement in colorectal carcinogenesis.

Methods

Expression of several molecules including gankyrin and certain stemness factors was compared in 50 pairs of adenoma and surrounding normal mucosa using real-time quantitative polymerase chain reaction and in 30 CRC tissues using immunohistochemistry.

Results

In CRC specimens, expression of CD133, a cancer stem cell marker, was significantly correlated with gankyrin expression. Gankyrin knockdown decreased the expression of vascular endothelial growth factor (VEGF) and stemness factors such as Nanog and Oct-4 in colorectal cancer cells. Expression of gankyrin and these stemness factors was significantly higher in adenomas than in the surrounding normal mucosa. Importantly, a significant correlation was observed between the expression of gankyrin, VEGF, and Nanog in colorectal adenomas.

Conclusion

In CRC development, gankyrin would control stem cell behavior by regulating the expression of stemness factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

VEGF:

Vascular endothelial growth factor

LST:

Laterally spreading tumor

References

  1. Ferlay J, Shin HR, Bray F et al. Cancer incidence and mortality worldwide. GLOBOCAN 2008 v1.2. IARC CancerBase No. 10; 2008.

  2. Kudo S. Endoscopic mucosal resection of flat and depressed types of early colorectal cancer. Endoscopy. 1993;25:455–461.

    Article  PubMed  CAS  Google Scholar 

  3. Teixeira CR, Tanaka S, Haruma K, et al. Flat-elevated colorectal neoplasms exhibit a high malignant potential. Oncology. 1996;53:89–93.

    Article  PubMed  CAS  Google Scholar 

  4. Saitoh Y, Waxman I, West AB, et al. Prevalence and distinctive biologic features of flat colorectal adenomas in a North American population. Gastroenterology. 2001;120:1657–1665.

    Article  PubMed  CAS  Google Scholar 

  5. Hurlstone DP, Korulla C, Lobo AJ. Colorectal laterally spreading tumors: clinical evaluation and endoscopic strategies updated. J Gastroenterol Hepatol. 2002;17:1344–1345.

    Article  PubMed  CAS  Google Scholar 

  6. Kudo S, Kashida H, Nakajima T, et al. Endoscopic diagnosis and treatment of early colorectal cancer. World J Surg. 1997;21:694–701.

    Article  PubMed  CAS  Google Scholar 

  7. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–111.

    Article  PubMed  CAS  Google Scholar 

  8. Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells–perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 2006;66:9339–9344.

    Article  PubMed  CAS  Google Scholar 

  9. O’Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–110.

    Article  PubMed  Google Scholar 

  10. Hoei-Hansen CE. Application of stem cell markers in search for neoplastic germ cells in dysgenetic gonads, extragonadal tumours, and in semen of infertile men. Cancer Treat Rev. 2008;3:348–367.

    Article  Google Scholar 

  11. Shan J, Shen J, Liu L, et al. Nanog regulates self-renewal of cancer stem cell through IGF pathway in human hepatocellular carcinoma. Hepatology. 2012;56:1004–1014.

    Article  PubMed  CAS  Google Scholar 

  12. Meng HM, Zheng P, Wang XY, et al. Overexpression of nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol Ther. 2010;9:295–302.

    Article  CAS  Google Scholar 

  13. Higashitsuji H, Itoh K, Nagao T, et al. Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med. 2000;6:96–99.

    Article  PubMed  CAS  Google Scholar 

  14. Tang S, Yang G, Meng Y, et al. Overexpression of a novel gene gankyrin correlates with the malignant phenotype of colorectal cancer. Cancer Biol Ther. 2010;9:88–95.

    Article  PubMed  CAS  Google Scholar 

  15. Higashitsuji H, Higashitsuji H, Itoh K, et al. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell. 2005;8:75–87.

    Article  PubMed  CAS  Google Scholar 

  16. Fu J, Chen Y, Cao J, et al. p28GANK overexpression accelerates hepatocellular carcinoma invasiveness and metastasis via phosphoinositol 3-kinase/AKT/hypoxia-inducible factor-1α pathways. Hepatology. 2011;53:181–192.

    Article  PubMed  CAS  Google Scholar 

  17. Sakurai T, He G, Matsuzawa A, et al. Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell. 2008;14:156–165.

    Article  PubMed  CAS  Google Scholar 

  18. Savagner P. The epithelial-mesenchymal transition (EMT) phenomenon. Ann Oncol. 2010;21:vii89–vii92.

    Article  PubMed  Google Scholar 

  19. Noro A, Sugai T, Hababo W, et al. Analysis of K-ras and p53 gene mutations in laterally spreading tumors of the colorectum. Pathol Int. 2003;53:828–836.

    Article  PubMed  CAS  Google Scholar 

  20. Beck B, Driessens G, Goossens S, et al. A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature. 2011;478:399–403.

    Article  PubMed  CAS  Google Scholar 

  21. Dong LW, Yang GZ, Pan YF, et al. The oncoprotein p28GANK establishes a positive feedback loop in β-catenin signaling. Cell Res. 2011;21:1248–1261.

    Article  PubMed  CAS  Google Scholar 

  22. Man JH, Liang B, Gu YX, et al. Gankyrin plays an essential role in Ras-induced tumorigenesis through regulation of the RhoA/ROCK pathway in mammalian cells. J Clin Invest. 2010;120:2829–2841.

    Article  PubMed  CAS  Google Scholar 

  23. Rotondano G, Bianco MA, Buffoli F, et al. The cooperative Italian FLIN study group: prevalence and clinico-pathological features of colorectal laterally spreading tumors. Endoscopy. 2011;43:856–861.

    Article  PubMed  CAS  Google Scholar 

  24. Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;45:141–146.

    Article  Google Scholar 

  25. Chan EM, Ratanasirintrawoot S, Park IH, et al. Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat Biotechnol. 2009;27:1033–1037.

    Article  PubMed  CAS  Google Scholar 

  26. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676.

    Article  PubMed  CAS  Google Scholar 

  27. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–1920.

    Article  PubMed  CAS  Google Scholar 

  28. Müller FJ, Laurent LC, Kostka D, et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature. 2008;455:401–405.

    Article  PubMed  Google Scholar 

  29. Ferrara N. VEGF-A: a critical regulator of blood vessel growth. Eur Cytokine Netw. 2009;20:158–163.

    PubMed  CAS  Google Scholar 

  30. Sakurai T, Kudo M. Signaling pathways governing tumor angiogenesis. Oncology. 2011;81:24–29.

    Article  PubMed  CAS  Google Scholar 

  31. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–732.

    Article  PubMed  CAS  Google Scholar 

  32. Sun W, Ding J, Wu K, et al. Gankyrin-mediated dedifferentiation facilitates the tumorigenicity of rat hepatocytes and hepatoma cells. Hepatology. 2011;54:1259–1272.

    Article  PubMed  CAS  Google Scholar 

  33. Qian YW, Chen Y, Yang W, et al. p28(GANK) prevents degradation of Oct4 and promotes expansion of tumor-initiating cells in hepatocarcinogenesis. Gastroenterology. 2012;142:1547–1558.

    Article  PubMed  CAS  Google Scholar 

  34. Umemura A, Itoh Y, Itoh K, et al. Association of gankyrin protein expression with early clinical stages and insulin-like growth factor-binding protein 5 expression in human hepatocellular carcinoma. Hepatology. 2008;47:493–502.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yoshie O and Munakata H (Kinki University) for technical assistance and helpful suggestions. This research was supported by grants from the Yasuda Medical Foundation, Novartis Foundation and Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toshiharu Sakurai or Masatoshi Kudo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mine, H., Sakurai, T., Kashida, H. et al. Association of Gankyrin and Stemness Factor Expression in Human Colorectal Cancer. Dig Dis Sci 58, 2337–2344 (2013). https://doi.org/10.1007/s10620-013-2627-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2627-8

Keywords

Navigation