Skip to main content

Advertisement

Log in

Claudin-2 Regulates Colorectal Inflammation via Myosin Light Chain Kinase-Dependent Signaling

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Claudins have been demonstrated to be associated with inflammatory bowel disease (IBD), but the specific role of claudin-2 in colorectal inflammation remains undefined.

Aims

We aimed to determine the role of claudin-2 in TNFα-induced colorectal inflammation.

Methods

We used claudin-2 (−/−) mice to assess the role of claudin-2 in colon. The mice were intraperitoneally injected with 3 μg of recombinant murine TNFα, and the NF-κB signaling and mRNA expression levels of proinflammatory cytokines and myosin light chain kinase (MLCK) were evaluated. Moreover, in claudin-2 (−/−) mice, colitis was induced by the administration of dextran sodium sulfate (DSS). The involvement of claudin-2 in colorectal inflammation was also investigated using the Caco-2 human colon adenocarcinoma cell line, and the expression of claudin-2 was downregulated using claudin-2 siRNA.

Results

TNFα-induced colorectal inflammation via NF-κB signaling activation was enhanced in claudin-2 (−/−) mice compared with that in claudin-2 (+/+) mice. MLCK expression level in the colon tissue of claudin-2 (−/−) mice treated with TNFα was enhanced in comparison to that of the claudin-2 (+/+) mice. DSS-induced colitis was more severe in the claudin-2 (−/−) mice than in the claudin-2 (+/−) mice. In in vitro experiments, the decreased expression of claudin-2 enhanced the expressions of IL-6, IL-1β and MLCK.

Conclusions

Our findings concerning the role of claudin-2 in epithelial inflammatory responses enrich our collective understanding of mucosal homeostasis and intestinal diseases such as IBD. Furthermore, the results of this study indicate that claudin-2 and MLCK are potential therapeutic targets for treatments against intestinal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cereijido M, Contreras RG, Shoshani L. Cell adhesion, polarity, and epithelia in the dawn of metazoans. Physiol Rev. 2004;84:1229–1262.

    Article  PubMed  CAS  Google Scholar 

  2. Mullin JM. Epithelial barriers, compartmentation, and cancer. Sci STKE. 2004;216:pe2.

    Google Scholar 

  3. Furuse M, Hirase T, Itoh M, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123:1777–1788.

    Article  PubMed  CAS  Google Scholar 

  4. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem. 1998;45:29745–29753.

    Article  Google Scholar 

  5. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998;141:1539–1550.

    Article  PubMed  CAS  Google Scholar 

  6. McCarthy KM, Skare IB, Stankewich MC, et al. Occludin is a functional component of the tight junction. J Cell Sci. 1996;109:2287–2298.

    PubMed  CAS  Google Scholar 

  7. Furuse M, Tsukita S. Claudins in occluding junctions of humans and files. Trends Cell Biol. 2006;16:181–188.

    Article  PubMed  CAS  Google Scholar 

  8. Mizoguchi A, Mizoguchi E. Inflammatory bowel disease, past, present and future: lessons from animal models. J Gastroenterol. 2008;43:1–17.

    Article  PubMed  Google Scholar 

  9. Zimmerman NP, Vongsa RA, Wendt MK, Dwinell MB. Chemokines and chemokine receptors in mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease. Inflamm Bowel Dis. 2008;14:1000–1011.

    Article  PubMed  Google Scholar 

  10. Weber CR, Nalle SC, Tretiakova M, Rubin DT, Turner JR. Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab Invest. 2008;10:1110–1120.

    Article  Google Scholar 

  11. Zeissig S, Bürgel N, Günzel D, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007;56:61–72.

    Article  PubMed  CAS  Google Scholar 

  12. Oshima T, Miwa H, Joh T. Changes in the expression of claudins in active ulcerative colitis. J Gastroenterol Hepatol. 2008;2:146–150.

    Article  Google Scholar 

  13. Chen HQ, Yang J, Zhang M, et al. Lactobacillus plantarum ameliorates colonic epithelial barrier dysfunction by modulating the apical junctional complex and PepT1 in IL-10 knockout mice. Am J Physiol Gastrointest Liver Physiol. 2010;299:1287–1297.

    Article  Google Scholar 

  14. Furuse M, Furuse K, Sasaki H, Tsukita S. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol. 2001;153:263–272.

    Article  PubMed  CAS  Google Scholar 

  15. Amasheh S, Meiri N, Gitter AH, et al. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci. 2002;115:4969–4976.

    Article  PubMed  CAS  Google Scholar 

  16. Muto S, Hata M, Taniguchi J, et al. Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci USA. 2010;107:8011–8016.

    Article  PubMed  CAS  Google Scholar 

  17. Rosenthal R, Milatz S, Krug SM, et al. Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci. 2010;123:1913–1921.

    Article  PubMed  CAS  Google Scholar 

  18. Yu AS. Molecular basis for cation selectivity in claudin-2-based pores. Ann N Acad Sci. 2009;1165:53–57.

    Article  PubMed  CAS  Google Scholar 

  19. Angelow S, Yu AS. Structure-function studies of claudin extracellular domains by cysteine-scanning mutagenesis. J Biol Chem. 2009;284:29205–29217.

    Article  PubMed  CAS  Google Scholar 

  20. Fujita H, Chiba H, Yokozaki H, et al. Differential expression and subcellular localization of claudin-7, -8, -12, -13, and -15 along the mouse intestine. J Histochem Cytochem. 2006;54:933–934.

    Article  PubMed  CAS  Google Scholar 

  21. Escaffit F, Boudreau F, Beaulieu JF. Differential expression of claudin-2 along the human intestine; implication of GATA-4 in the maintenance of claudin-2 in differentiating cells. J Cell Physiol. 2005;203:15–26.

    Article  PubMed  CAS  Google Scholar 

  22. Hering NA, Schulzke JD. Therapeutic options to modulate barrier defects in inflammatory bowel disease. Dig Dis. 2009;27:450–454.

    Article  PubMed  Google Scholar 

  23. Graham WV, Wang F, Clayburgh DR, et al. Tumor necrosis factor-induced long myosin light chain kinase transcription is regulated by differentiation-dependent signaling events. Characterization of the human long myosin light chain kinase promoter. J Biol Chem. 2006;36:26205–26215.

    Article  Google Scholar 

  24. Furumatsu K, Nishiumi S, Kawano Y, et al. A role of the aryl hydrocarbon receptor in attenuation of colitis. Dig Dis Sci. 2011;56:2532–2544.

    Article  PubMed  CAS  Google Scholar 

  25. Nishiumi S, Yabushita Y, Fukuda I, Mukai R, Yoshida K, Ashida H. Molokhia (Corchorus olitorius L.) extract suppresses transformation of the aryl hydrocarbon receptor induced by dioxins. Food Chem Toxicol. 2006;44:250–260.

    Article  PubMed  CAS  Google Scholar 

  26. Mankertz J, Amasheh M, Krug SM, et al. TNFalpha up-regulates claudin-2 expression in epithelial HT-29/B6 cells via phosphatidylinositol-3-kinase signaling. Cell Tissue Res. 2009;336:67–77.

    Article  PubMed  CAS  Google Scholar 

  27. Ye D, Ma I, Ma TY. Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol. 2006;290:496–504.

    Article  Google Scholar 

  28. Santana A, Medina C, Paz-Cabrera MC, et al. Attenuation of dextran sodium sulphate induced colitis in matrix metalloproteinase-9 deficient mice. World J Gastroenterol. 2006;12:6464–6472.

    PubMed  CAS  Google Scholar 

  29. Castaneda FE, Walia B, Vijay-Kumar M, et al. Targeted deletion of metalloproteinase 9 attenuates experimental colitis in mice: central role of epithelial-derived MMP. Gastroenterology. 2005;129:1991–2008.

    Article  PubMed  CAS  Google Scholar 

  30. Wang F, Graham WV, Wang Y, et al. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol. 2005;166:409–419.

    Article  PubMed  CAS  Google Scholar 

  31. Amasheh M, Fromm A, Krug SM, et al. TNFα-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and NFkappaB signaling. J Cell Sci. 2010;123:4145–4155.

    Article  PubMed  CAS  Google Scholar 

  32. Tamura A, Hayashi H, Imasato M, et al. Loss of claudin-15, but not claudin-2, causes Na+ deficiency and glucose malabsorption in mouse small intestine. Gastroenterology. 2011;140:913–923.

    Article  PubMed  CAS  Google Scholar 

  33. Ye D, Ma TY. Cellular and molecular mechanisms that mediate basal and tumour necrosis factor-alpha-induced regulation of myosin light chain kinase gene activity. J Cell Mol Med. 2008;12:1331–1346.

    Article  PubMed  CAS  Google Scholar 

  34. Su L, Shen L, Clayburgh DR, et al. Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology. 2009;136:551–563.

    Article  PubMed  CAS  Google Scholar 

  35. Wadgaonkar R, Linz-McGillem L, Zaiman AL, Garcia JG. Endothelial cell myosin light chain kinase (MLCK) regulates TNFalpha-induced NFkappaB activity. J Cell Biochem. 2005;94:351–364.

    Article  PubMed  CAS  Google Scholar 

  36. Weber CR, Raleigh DR, Su L, et al. Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity. J Biol Chem. 2010;285:12037–12046.

    Article  PubMed  CAS  Google Scholar 

  37. Minty A, Chalon P, Derocq JM, et al. Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature. 1993;362:248–250.

    Article  PubMed  CAS  Google Scholar 

  38. Manna SK, Aggarwal BB. IL-13 suppresses TNF-induced activation of nuclear factor-kappa B, activation protein-1, and apoptosis. J Immunol. 1998;161:2863–2872.

    PubMed  CAS  Google Scholar 

  39. English K, Brady C, Corcoran P, Cassidy JP, Mahon BP. Inflammation of the respiratory tract is associated with CCL28 and CCR10 expression in a murine model of allergic asthma. Immunol Lett. 2006;103:92–100.

    Article  PubMed  CAS  Google Scholar 

  40. Ikari A, Takiguchi A, Atomi K, Sato T, Sugatani J. Decrease in claudin-2 expression enhances cell migration in renal epithelial Madin-Darby canine kidney cells. J Cell Physiol. 2011;226:1471–1478.

    Article  PubMed  CAS  Google Scholar 

  41. Xue M, Jackson CJ. Autocrine actions of matrix metalloproteinase (MMP)-2 counter the effects of MMP-9 to promote survival and prevent terminal differentiation of cultured human keratinocytes. J Invest Dermatol. 2008;128:2676–2685.

    Article  PubMed  CAS  Google Scholar 

  42. Craig R, Larkin A, Mingo AM, et al. p38 MAPK and NF-kappa B collaborate to induce interleukin-6 gene expression and release. Evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. J Biol Chem. 2000;275:23814–23824.

    Article  PubMed  CAS  Google Scholar 

  43. Maulik N, Sato M, Price BD, Das DK. An essential role of NFkappaB in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia. FEBS Lett. 1998;429:365–369.

    Article  PubMed  CAS  Google Scholar 

  44. Zechner D, Craig R, Hanford DS, McDonough PM, Sabbadini RA, Glembotski CC. MKK6 activates myocardial cell NF-kappaB and inhibits apoptosis in a p38 mitogen-activated protein kinase-dependent manner. J Biol Chem. 1998;273:8232–8239.

    Article  PubMed  CAS  Google Scholar 

  45. Li H, Mittal A, Paul PK, et al. Tumor necrosis factor-related weak inducer of apoptosis augments matrix metalloproteinase 9 (MMP-9) production in skeletal muscle through the activation of nuclear factor-kappaB-inducing kinase and p38 mitogen-activated protein kinase: a potential role of MMP-9 in myopathy. J Biol Chem. 2009;284:4439–4450.

    Article  PubMed  CAS  Google Scholar 

  46. Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 2007;8:1358–1375.

    Article  Google Scholar 

  47. Al-Sadi R, Ye D, Said HM, Ma TY. Cellular and molecular mechanism of interleukin-1β modulation of Caco-2 intestinal epithelial tight junction barrier. J Cell Mol Med. 2011;15:970–982.

    Article  PubMed  CAS  Google Scholar 

  48. Santana A, Medina C, Paz-Cabrera MC, et al. Attenuation of dextran sodium sulphate induced colitis in matrix metalloproteinase-9 deficient mice. World J Gastroenterol. 2006;12:6464–6472.

    PubMed  CAS  Google Scholar 

  49. Baugh MD, Perry MJ, Hollander AP, et al. Matrix metalloproteinase levels are elevated in inflammatory bowel disease. Gastroenterology. 1999;117:814–822.

    Article  PubMed  CAS  Google Scholar 

  50. Bailey CJ, Hembry RM, Alexander A, Irving MH, Grant ME, Shuttleworth CA. Distribution of the matrix metalloproteinases stromelysin, gelatinases A and B, and collagenase in Crohn’s disease and normal intestine. J Clin Pathol. 1994;47:113–116.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants for the Global COE Program, Global Center of Excellence for Education and Research on Signal Transduction Medicine in the Coming Generation (M.Y. and T.A.), and for the Global COE Program, the Global Center for Education and Research in Integrative Membrane Biology (M.N.).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masaru Yoshida or Takeshi Azuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, M., Yoshida, M., Nishiumi, S. et al. Claudin-2 Regulates Colorectal Inflammation via Myosin Light Chain Kinase-Dependent Signaling. Dig Dis Sci 58, 1546–1559 (2013). https://doi.org/10.1007/s10620-012-2535-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2535-3

Keywords

Navigation