Skip to main content
Log in

Zinc Supplementation Modifies Tight Junctions and Alters Barrier Function of CACO-2 Human Intestinal Epithelial Layers

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Zinc deficiency is known to result in epithelial barrier leak in the GI tract. Precise effects of zinc on epithelial tight junctions (TJs) are only beginning to be described and understood. Along with nutritional regimens like methionine-restriction and compounds such as berberine, quercetin, indole, glutamine and rapamycin, zinc has the potential to function as a TJ modifier and selective enhancer of epithelial barrier function.

Aims

The purpose of this study was to determine the effects of zinc-supplementation on the TJs of a well-studied in vitro GI model, CACO-2 cells.

Methods

Barrier function was assessed electrophysiologically by measuring transepithelial electrical resistance (Rt), and radiochemically, by measuring transepithelial (paracellular) diffusion of 14C-D-mannitol and 14C-polyethyleneglycol. TJ composition was studied by Western immunoblot analyses of occludin, tricellulin and claudins-1 to -5 and -7.

Results

Fifty- and 100-μM zinc concentrations (control medium is 2 μM) significantly increase Rt but simultaneously increase paracellular leak to D-mannitol. Claudins 2 and 7 are downregulated in total cell lysates, while occludin, tricellulin and claudins-1, -3, -4 and -5 are unchanged. Claudins-2 and -7 as well as tricellulin exhibit decreased cytosolic content as a result of zinc supplementation.

Conclusions

Zinc alters CACO-2 TJ composition and modifies TJ barrier function selectively. Zinc is one of a growing number of “nutraceutical” substances capable of enhancing epithelial barrier function, and may find use in countering TJ leakiness induced in various disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TJ:

Tight junction

PD:

Potential difference

Iscc:

Short circuit current

Rt :

Transepithelial electrical resistance

MT 1/2:

Metallothionein 1/2

GI:

Gastrointestinal

FBS:

Fetal bovine serum

PBS:

Phosphate buffered saline

RDA:

Recommended daily allowance

SEM:

Standard error of the mean

LDH:

Lactate dehydrogenase

XTT:

Tetrazolium dye, sodium 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl-5-[(phenylamino)-carbonyl]-2H-tetrazolium)

LSC:

Liquid scintillation counting

PEG:

Polyethyleneglycol

References

  1. Cousins RJ, Zinc. In: Bowman BA, Russell RM, eds. Present Knowledge in Nutrition, vol 1. Washington, D.C.: ILSI Press; 2006:445–457.

  2. Binnebosel M, Grommes J, Koenen B, et al. Zinc deficiency impairs wound healing of colon anastomosis in rats. Int J Colorectal Dis. 2010;25:251–257.

    Article  PubMed  Google Scholar 

  3. Prasad AS. Impact of the discovery of human zinc deficiency on health. J Am Coll Nutr. 2009;28:257–265.

    PubMed  CAS  Google Scholar 

  4. Ibs KH, Rink L. Zinc-altered immune function. J Nutr. 2003;133:1452S–1456S.

    PubMed  CAS  Google Scholar 

  5. Ho E. Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem. 2004;15:572–578.

    Article  PubMed  CAS  Google Scholar 

  6. Mullin JM, Skrovanek SM, Valenzano MC. Modification of tight junction structure and permeability by nutritional means. Ann NY Acad Sci. 2009;1165:99–112.

    Article  PubMed  CAS  Google Scholar 

  7. Amasheh S, Dullat S, Fromm M, Schulzke JD, Buhr HJ, Kroesen AJ. Inflamed pouch mucosa possesses altered tight junctions indicating recurrence of inflammatory bowel disease. Int J Colorectal Dis. 2009;24:1149–1156.

    Article  PubMed  Google Scholar 

  8. Pearson AD, Eastham EJ, Laker MF, Craft AW, Nelson R. Intestinal permeability in children with Crohn’s disease and coeliac disease. Br Med J (Clin Res Ed). 1982;285:20–21.

    Article  CAS  Google Scholar 

  9. Sturniolo GC, Di Leo V, Ferronato A, D’Odorico A, D’Inca R. Zinc supplementation tightens “Leaky gut” in Crohn’s disease. Inflamm Bowel Dis. 2001;7:94–98.

    Article  PubMed  CAS  Google Scholar 

  10. Bao S, Knoell DL. Zinc modulates cytokine-induced lung epithelial cell barrier permeability. Am J Physiol Lung Cell Mol Physiol. 2006;291:L1132–L1141.

    Article  PubMed  CAS  Google Scholar 

  11. Rodriguez P, Darmon N, Chappuis P, et al. Intestinal paracellular permeability during malnutrition in guinea pigs: effect of high dietary zinc. Gut. 1996;39:416–422.

    Article  PubMed  CAS  Google Scholar 

  12. Lazzerini M, Ronfani L. Oral zinc for treating diarrhoea in children. Sao Paulo Med J 2011;129:118–119.

    Google Scholar 

  13. Zhong W, McClain CJ, Cave M, Kang YJ, Zhou Z. The role of zinc deficiency in alcohol-induced intestinal barrier dysfunction. Am J Physiol Gastrointest Liver Physiol 2010;298:G625–G633.

    Google Scholar 

  14. Peterson MD, Mooseker MS. Characterization of the enterocyte-like brush border cytoskeleton of the c2bbe clones of the human intestinal cell line, CACO-2. J Cell Sci. 1992;102:581–600.

    PubMed  CAS  Google Scholar 

  15. Hubatsch I, Ragnarsson EG, Artursson P. Determination of drug permeability and prediction of drug absorption in caco-2 monolayers. Nat Protoc. 2007;2:2111–2119.

    Article  PubMed  CAS  Google Scholar 

  16. Zemann N, Zemann A, Klein P, Elmadfa I, Huettinger M. Differentiation- and polarization-dependent zinc tolerance in CACO-2 cells. Eur J Nutr. 2010;50:379–386.

    Article  PubMed  Google Scholar 

  17. Skrovanek S, Valenzano MC, Mullin JM. Restriction of sulfur-containing amino acids alters claudin composition and improves tight junction barrier function. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1046–R1055.

    Article  PubMed  CAS  Google Scholar 

  18. Mullin JM, Marano CW, Laughlin KV, Nuciglio M, Stevenson BR, Soler P. Different size limitations for increased transepithelial paracellular solute flux across phorbol ester and tumor necrosis factor-treated epithelial cell sheets. J Cell Physiol. 1997;171:226–233.

    Article  PubMed  CAS  Google Scholar 

  19. Burton K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956;62:315–323.

    PubMed  CAS  Google Scholar 

  20. Mullin JM, Fluk L, Kleinzeller A. Basal-lateral transport and transcellular flux of methyl alpha-d-glucoside across LLC-PK1 renal epithelial cells. Biochim Biophys Acta. 1986;885:233–239.

    Article  PubMed  CAS  Google Scholar 

  21. Rabito CA. Reassembly of the occluding junctions in a renal cell line with characteristics of proximal tubular cells. Am J Physiol. 1986;251:F978–F987.

    PubMed  CAS  Google Scholar 

  22. Finamore A, Massimi M, Conti Devirgiliis L, Mengheri E. Zinc deficiency induces membrane barrier damage and increases neutrophil transmigration in CACO-2 cells. J Nutr. 2008;138:1664–1670.

    PubMed  CAS  Google Scholar 

  23. Christopher P, Farrell MB, Mullin JM, Lande L, Zitin M. Epithelial barrier leak in gastrointestinal disease and multiorgan failure. J Epithelial Biol Pharmacol. 2011;5:13–18.

    Google Scholar 

  24. Zhong W, McClain CJ, Cave M, Kang YJ, Zhou Z. The role of zinc deficiency in alcohol-induced intestinal barrier dysfunction. Am J Physiol Gastrointest Liver Physiol. 2010;298:18.

    Article  Google Scholar 

  25. Zhang B, Guo Y. Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets. Br J Nutr. 2009;102:687–693.

    Article  PubMed  CAS  Google Scholar 

  26. Sturniolo GC, Fries W, Mazzon E, Di Leo V, Barollo M, D’Inca R. Effect of zinc supplementation on intestinal permeability in experimental colitis. J Lab Clin Med. 2002;139:311–315.

    Article  PubMed  CAS  Google Scholar 

  27. Ranaldi G, Caprini V, Sambuy Y, Perozzi G, Murgia C. Intracellular zinc stores protect the intestinal epithelium from ochratoxin a toxicity. Toxicol in Vitro. 2009;23:1516–1521.

    Article  PubMed  CAS  Google Scholar 

  28. Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E. Zinc oxide protects cultured enterocytes from the damage induced by escherichia coli. J Nutr. 2003;133:4077–4082.

    PubMed  CAS  Google Scholar 

  29. Mullin JM. Editorial: Augmenting epithelial barrier function. J Epithelial Biol Pharmacol. 2012;5:10–12.

    Article  Google Scholar 

  30. Shen H, Qin H, Guo J. Cooperation of metallothionein and zinc transporters for regulating zinc homeostasis in human intestinal caco-2 cells. Nutr Res. 2008;28:406–413.

    Article  PubMed  CAS  Google Scholar 

  31. Jou MY, Philipps AF, Kelleher SL, Lonnerdal B. Effects of zinc exposure on zinc transporter expression in human intestinal cells of varying maturity. J Pediatr Gastroenterol Nutr. 2010;50:587–595.

    Article  PubMed  CAS  Google Scholar 

  32. Lal-Nag M, Morin PJ. The claudins. Genome Biol. 2009;10:235.

    Article  PubMed  Google Scholar 

  33. Escaffit F, Boudreau F, Beaulieu JF. Differential expression of claudin-2 along the human intestine: implication of gata-4 in the maintenance of claudin-2 in differentiating cells. J Cell Physiol. 2005;203:15–26.

    Article  PubMed  CAS  Google Scholar 

  34. Reyes JL, Lamas M, Martin D, et al. The renal segmental distribution of claudins changes with development. Kidney Int. 2002;62:476–487.

    Article  PubMed  CAS  Google Scholar 

  35. Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol. 2006;68:403–429.

    Article  PubMed  Google Scholar 

  36. Alexandre MD, Lu Q, Chen YH. Overexpression of claudin-7 decreases the paracellular Cl conductance and increases the paracellular Na+ conductance in LLC-PK1 cells. J Cell Sci. 2005;118:2683–2693.

    Article  PubMed  CAS  Google Scholar 

  37. Atisook K, Carlson S, Madara JL. Effects of phlorizin and sodium on glucose-elicited alterations of cell junctions in intestinal epithelia. Am J Physiol. 1990;258:C77–C85.

    PubMed  CAS  Google Scholar 

  38. Ballard ST, Hunter JH, Taylor AE. Regulation of tight-junction permeability during nutrient absorption across the intestinal epithelium. Annu Rev Nutr. 1995;15:35–55.

    Article  PubMed  CAS  Google Scholar 

  39. Gato-Pecina JJ, Ponz F. Use of the paracellular way for the intestinal absorption of sugars. Rev Esp Fisiol. 1990;46:343–352.

    PubMed  CAS  Google Scholar 

  40. Sadowski DC, Meddings JB. Luminal nutrients alter tight-junction permeability in the rat jejunum: an in vivo perfusion model. Can J Physiol Pharmacol. 1993;71:835–839.

    Article  PubMed  CAS  Google Scholar 

  41. Carr G, Wright JA, Simmons NL. Epithelial barrier resistance is increased by the divalent cation zinc in cultured MDCKII epithelial monolayers. J Membr Biol 2010;237:115–123.

    Google Scholar 

Download references

Acknowledgments

This research was funded in part by a grant award from the Sharpe-Strumia Foundation. We are very appreciative of the editorial assistance of Ms. Kristin M. Hayden in preparation of this manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Mullin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Valenzano, M.C., Mercado, J.M. et al. Zinc Supplementation Modifies Tight Junctions and Alters Barrier Function of CACO-2 Human Intestinal Epithelial Layers. Dig Dis Sci 58, 77–87 (2013). https://doi.org/10.1007/s10620-012-2328-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2328-8

Keywords

Navigation