Skip to main content

Advertisement

Log in

Nutritional and Probiotic Supplementation in Colitis Models

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

In vitro and animals models have long been used to study human diseases and identify novel therapeutic approaches that can be applied to combat these conditions. Ulcerative colitis and Crohn’s disease are the two main entities of inflammatory bowel disease (IBD). There is an intricate relationship between IBD features in human patients, in vitro and animal colitis models, mechanisms and possible therapeutic approaches in these models, and strategies that can be extrapolated and applied in humans. Malnutrition, particularly protein-energy malnutrition and vitamin and micronutrient deficiencies, as well as dysregulation of the intestinal microbiota, are common features of IBD. Based on these observations, dietary supplementation with essential nutrients known to be in short supply in the diet in IBD patients and with other molecules believed to provide beneficial anti-inflammatory effects, as well as with probiotic organisms that stimulate immune functions and resistance to infection has been tested in colitis models. Here we review current knowledge on nutritional and probiotic supplementation in in vitro and animal colitis models. While some of these strategies require further fine-tuning before they can be applied in human IBD patients, their intended purpose is to prevent, delay or treat disease symptoms in a non-pharmaceutical manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–434.

    CAS  PubMed  Google Scholar 

  2. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361:2066–2078.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Nanau RM, Neuman MG. Metabolome and inflammasome in inflammatory bowel disease. Transl Res. 2012;160:1–28.

    CAS  PubMed  Google Scholar 

  4. Beaugerie L, Seksik P, Nion-Larmurier I, Gendre JP, Cosnes J. Predictors of Crohn’s disease. Gastroenterology. 2006;130:650–656.

    PubMed  Google Scholar 

  5. Newman B, Siminovitch KA. Recent advances in the genetics of inflammatory bowel disease. Curr Opin Gastroenterol. 2005;21:401–407.

    PubMed  Google Scholar 

  6. Ferguson LR, Shelling AN, Browning BL, Huebner C, Petermann I. Genes, diet and inflammatory bowel disease. Mutat Res. 2007;622:70–83.

    CAS  PubMed  Google Scholar 

  7. Neuman MG, Nanau RM. Single nucleotide polymorphisms in inflammatory bowel disease. Transl Res. 2012;160:45–64.

    CAS  PubMed  Google Scholar 

  8. Hisamatsu T, Suzuki M, Reinecker HC, Nadeau WJ, McCormick BA, Podolsky DK. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology. 2003;124:993–1000.

    CAS  PubMed  Google Scholar 

  9. Allez M, Lemann M, Bonnet J, Cattan P, Jian R, Modigliani R. Long term outcome of patients with active Crohn’s disease exhibiting extensive and deep ulcerations at colonoscopy. Am J Gastroenterol. 2002;97:947–953.

    PubMed  Google Scholar 

  10. Neuman MG, Nanau RM. Inflammatory bowel disease: role of diet, microbiota, life style. Transl Res. 2012;160:29–44.

    Google Scholar 

  11. Ghishan FK, Kiela PR. From probiotics to therapeutics: another step forward? J Clin Invest. 2011;121:2149–2152.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Neuman MG. Immune dysfunction in inflammatory bowel disease. Transl Res. 2007;149:173–186.

    CAS  PubMed  Google Scholar 

  13. Neuman MG. Signaling for inflammation and repair in inflammatory bowel disease. Rom J Gastroenterol. 2004;13:309–316.

    PubMed  Google Scholar 

  14. Schepens MA, Schonewille AJ, Vink C, et al. Supplemental calcium attenuates the colitis-related increase in diarrhea, intestinal permeability, and extracellular matrix breakdown in HLA-B27 transgenic rats. J Nutr. 2009;139:1525–1533.

    CAS  PubMed  Google Scholar 

  15. Kong J, Zhang Z, Musch MW, et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol. 2008;294:G208–G216.

    CAS  PubMed  Google Scholar 

  16. Werner T, Hoermannsperger G, Schuemann K, Hoelzlwimmer G, Tsuji S, Haller D. Intestinal epithelial cell proteome from wild-type and TNFDeltaARE/WT mice: effect of iron on the development of chronic ileitis. J Proteome Res. 2009;8:3252–3264.

    CAS  PubMed  Google Scholar 

  17. Schepens MA, Vink C, Schonewille AJ, et al. Supplemental antioxidants do not ameliorate colitis development in HLA-B27 transgenic rats despite extremely low glutathione levels in colonic mucosa. Inflamm Bowel Dis. 2011;17:2065–2075.

    PubMed  Google Scholar 

  18. Oz HS, Chen TS, Nagasawa H. Comparative efficacies of 2 cysteine prodrugs and a glutathione delivery agent in a colitis model. Transl Res. 2007;150:122–129.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Kim CJ, Kovacs-Nolan J, Yang C, Archbold T, Fan MZ, Mine Y. l-cysteine supplementation attenuates local inflammation and restores gut homeostasis in a porcine model of colitis. Biochim Biophys Acta. 2009;1790:1161–1169.

    CAS  PubMed  Google Scholar 

  20. Aziz MM, Ishihara S, Mishima Y, et al. MFG-E8 attenuates intestinal inflammation in murine experimental colitis by modulating osteopontin-dependent alphavbeta3 integrin signaling. J Immunol. 2009;182:7222–7232.

    CAS  PubMed  Google Scholar 

  21. Arsenescu V, Narasimhan ML, Halide T, et al. Adiponectin and plant-derived mammalian adiponectin homolog exert a protective effect in murine colitis. Dig Dis Sci. 2011;56:2818–2832.

    CAS  PubMed  Google Scholar 

  22. Ramakers JD, Mensink RP, Schaart G, Plat J. Arachidonic acid but not eicosapentaenoic acid (EPA) and oleic acid activates NF-kappaB and elevates ICAM-1 expression in Caco-2 cells. Lipids. 2007;42:687–698.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Varnalidis I, Ioannidis O, Karamanavi E, et al. Omega 3 fatty acids supplementation has an ameliorative effect in experimental ulcerative colitis despite increased colonic neutrophil infiltration. Rev Esp Enferm Dig. 2011;103:511–518.

    CAS  PubMed  Google Scholar 

  24. Bassaganya-Riera J, Hontecillas R. CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD. Clin Nutr. 2006;25:454–465.

    CAS  PubMed  Google Scholar 

  25. Jia Q, Ivanov I, Zlatev ZZ, et al. Dietary fish oil and curcumin combine to modulate colonic cytokinetics and gene expression in dextran sodium sulphate-treated mice. Br J Nutr. 2011;106:519–529.

    CAS  PubMed  Google Scholar 

  26. Witaicenis A, Fruet AC, Salem L, Di Stasi LC. Dietary polydextrose prevents inflammatory bowel disease in trinitrobenzenesulfonic acid model of rat colitis. J Med Food. 2010;13:1391–1396.

    CAS  PubMed  Google Scholar 

  27. Koetzner L, Grover G, Boulet J, Jacoby HI. Plant-derived polysaccharide supplements inhibit dextran sulfate sodium-induced colitis in the rat. Dig Dis Sci. 2010;55:1278–1285.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Arribas B, Suárez-Pereira E, Ortiz Mellet C, et al. Di-d-fructose dianhydride-enriched caramels: effect on colon microbiota, inflammation, and tissue damage in trinitrobenzenesulfonic acid-induced colitic rats. J Agric Food Chem. 2010;58:6476–6484.

    CAS  PubMed  Google Scholar 

  29. Rodríguez-Cabezas ME, Camuesco D, Arribas B, et al. The combination of fructooligosaccharides and resistant starch shows prebiotic additive effects in rats. Clin Nutr. 2010;29:832–839.

    PubMed  Google Scholar 

  30. Pouillart PR, Dépeint F, Abdelnour A, et al. Nutriose, a prebiotic low-digestible carbohydrate, stimulates gut mucosal immunity and prevents TNBS-induced colitis in piglets. Inflamm Bowel Dis. 2010;16:783–794.

    PubMed  Google Scholar 

  31. Komiyama Y, Andoh A, Fujiwara D, et al. New prebiotics from rice bran ameliorate inflammation in murine colitis models through the modulation of intestinal homeostasis and the mucosal immune system. Scand J Gastroenterol. 2011;46:40–52.

    CAS  PubMed  Google Scholar 

  32. Hale LP, Chichlowski M, Trinh CT, Greer PK. Dietary supplementation with fresh pineapple juice decreases inflammation and colonic neoplasia in IL-10-deficient mice with colitis. Inflamm Bowel Dis. 2010;16:2012–2021.

    PubMed Central  PubMed  Google Scholar 

  33. Edmunds SJ, Roy NC, Love DR, Laing WA. Kiwifruit extracts inhibit cytokine production by lipopolysaccharide-activated macrophages, and intestinal epithelial cells isolated from IL10 gene deficient mice. Cell Immunol. 2011;270:70–79.

    CAS  PubMed  Google Scholar 

  34. Park MY, Kwon HJ, Sung MK. Dietary aloin, aloesin, or aloe-gel exerts anti-inflammatory activity in a rat colitis model. Life Sci. 2011;88:486–492.

    CAS  PubMed  Google Scholar 

  35. Mochizuki M, Shigemura H, Hasegawa N. Anti-inflammatory effect of enzymatic hydrolysate of corn gluten in an experimental model of colitis. J Pharm Pharmacol. 2010;62:389–392.

    CAS  PubMed  Google Scholar 

  36. Guri AJ, Hontecillas R, Bassaganya-Riera J. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration. Clin Nutr. 2010;29:824–831.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Yasui Y, Hosokawa M, Mikami N, Miyashita K, Tanaka T. Dietary astaxanthin inhibits colitis and colitis-associated colon carcinogenesis in mice via modulation of the inflammatory cytokines. Chem Biol Interact. 2011;193:79–87.

    CAS  PubMed  Google Scholar 

  38. Sánchez-Fidalgo S, Cárdeno A, Villegas I, Talero E, de la Lastra CA. Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice. Eur J Pharmacol. 2010;633:78–84.

    PubMed  Google Scholar 

  39. Jiang H, Przybyszewski J, Mitra D, et al. Soy protein diet, but not Lactobacillus rhamnosus GG, decreases mucin-1, trefoil factor-3, and tumor necrosis factor-α in colon of dextran sodium sulfate-treated C57BL/6 mice. J Nutr. 2011;141:1239–1246.

    CAS  PubMed  Google Scholar 

  40. Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol. 2007;9:804–816.

    CAS  PubMed  Google Scholar 

  41. Grabig A, Paclik D, Guzy C, et al. Escherichia coli strain Nissle 1917 ameliorates experimental colitis via toll-like receptor 2- and toll-like receptor 4-dependent pathways. Infect Immun. 2006;74:4075–4082.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Ukena SN, Singh A, Dringenberg U, et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One. 2007;2:e1308.

    PubMed Central  PubMed  Google Scholar 

  43. Garrido-Mesa N, Utrilla P, Comalada M, et al. The association of minocycline and the probiotic Escherichia coli Nissle 1917 results in an additive beneficial effect in a DSS model of reactivated colitis in mice. Biochem Pharmacol. 2011;82:1891–1900.

    CAS  PubMed  Google Scholar 

  44. Shibolet O, Karmeli F, Eliakim R, et al. Variable response to probiotics in two models of experimental colitis in rats. Inflamm Bowel Dis. 2002;8:399–406.

    PubMed  Google Scholar 

  45. Hart AL, Lammers K, Brigidi P, et al. Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut. 2004;53:1602–1609.

    CAS  PubMed  Google Scholar 

  46. Mennigen R, Nolte K, Rijcken E, et al. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1140–G1149.

    CAS  PubMed  Google Scholar 

  47. Reiff C, Delday M, Rucklidge G, et al. Balancing inflammatory, lipid, and xenobiotic signaling pathways by VSL#3, a biotherapeutic agent, in the treatment of inflammatory bowel disease. Inflamm Bowel Dis. 2009;15:1721–1736.

    CAS  PubMed  Google Scholar 

  48. Mencarelli A, Distrutti E, Renga B, et al. Probiotics modulate intestinal expression of nuclear receptor and provide counter-regulatory signals to inflammation-driven adipose tissue activation. PLoS One. 2011;6:e22978.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Kim Y, Kim SH, Whang KY, Kim YJ, Oh S. Inhibition of Escherichia coli O157:H7 attachment by interactions between lactic acid bacteria and intestinal epithelial cells. J Microbiol Biotechnol. 2008;18:1278–1285.

    CAS  PubMed  Google Scholar 

  50. Ueno N, Fujiya M, Segawa S, et al. Heat-killed body of Lactobacillus brevis SBC8803 ameliorates intestinal injury in a murine model of colitis by enhancing the intestinal barrier function. Inflamm Bowel Dis. 2011;17:2235–2250.

    PubMed  Google Scholar 

  51. Takamura T, Harama D, Fukumoto S, et al. Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis. Immunol Cell Biol. 2011;89:817–822.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Yoon SW, Lee CH, Kim JY, Kim JY, Sung MH, Poo H. Lactobacillus casei secreting alpha-MSH induces the therapeutic effect on DSS-induced acute colitis in Balb/c Mice. J Microbiol Biotechnol. 2008;18:1975–1983.

    CAS  PubMed  Google Scholar 

  53. Mattar AF, Teitelbaum DH, Drongowski RA, Yongyi F, Harmon CM, Coran AG. Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatr Surg Int. 2002;18:586–590.

    CAS  PubMed  Google Scholar 

  54. Matsumoto S, Hara T, Nagaoka M, et al. A component of polysaccharide peptidoglycan complex on Lactobacillus induced an improvement of murine model of inflammatory bowel disease and colitis-associated cancer. Immunology. 2009;128:e170–e180.

    CAS  PubMed  Google Scholar 

  55. Sengül N, Işık S, Aslım B, Uçar G, Demirbağ AE. The effect of exopolysaccharide-producing probiotic strains on gut oxidative damage in experimental colitis. Dig Dis Sci. 2011;56:707–714.

    PubMed  Google Scholar 

  56. Mañé J, Lorén V, Pedrosa E, et al. Lactobacillus fermentum CECT 5716 prevents and reverts intestinal damage on TNBS-induced colitis in mice. Inflamm Bowel Dis. 2009;15:1155–1163.

    PubMed  Google Scholar 

  57. Peran L, Camuesco D, Comalada M, et al. Lactobacillus fermentum, a probiotic capable to release glutathione, prevents colonic inflammation in the TNBS model of rat colitis. Int J Colorectal Dis. 2006;21:737–746.

    PubMed  Google Scholar 

  58. Nishitani Y, Tanoue T, Yamada K, et al. Lactococcus lactis subsp. cremoris FC alleviates symptoms of colitis induced by dextran sulfate sodium in mice. Int Immunopharmacol. 2009;9:1444–1451.

    CAS  PubMed  Google Scholar 

  59. Oliveira M, Bosco N, Perruisseau G, et al. Lactobacillus paracasei reduces intestinal inflammation in adoptive transfer mouse model of experimental colitis. Clin Dev Immunol. 2011;2011:807483.

    PubMed Central  PubMed  Google Scholar 

  60. Chu ZX, Chen HQ, Ma YL, et al. Lactobacillus plantarum prevents the upregulation of adhesion molecule expression in an experimental colitis model. Dig Dis Sci. 2010;55:2505–2513.

    CAS  PubMed  Google Scholar 

  61. Schreiber O, Petersson J, Phillipson M, Perry M, Roos S, Holm L. Lactobacillus reuteri prevents colitis by reducing P-selectin-associated leukocyte- and platelet-endothelial cell interactions. Am J Physiol Gastrointest Liver Physiol. 2009;296:G534–G542.

    CAS  PubMed  Google Scholar 

  62. Foligné B, Zoumpopoulou G, Dewulf J, et al. A key role of dendritic cells in probiotic functionality. PLoS One. 2007;2:e313.

    PubMed Central  PubMed  Google Scholar 

  63. Miyauchi E, Morita H, Tanabe S. Lactobacillus rhamnosus alleviates intestinal barrier dysfunction in part by increasing expression of zonula occludens-1 and myosin light-chain kinase in vivo. J Dairy Res. 2009;92:2400–2408.

    CAS  Google Scholar 

  64. Macho Fernandez E, Valenti V, Rockel C, et al. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut. 2011;60:1050–1059.

    PubMed  Google Scholar 

  65. Lee B, Lee JH, Lee HS, et al. Glycosaminoglycan degradation-inhibitory lactic acid bacteria ameliorate 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice. J Microbiol Biotechnol. 2009;19:616–621.

    CAS  PubMed  Google Scholar 

  66. Roselli M, Finamore A, Nuccitelli S, et al. Prevention of TNBS-induced colitis by different Lactobacillus and Bifidobacterium strains is associated with an expansion of gammadelta T and regulatory T cells of intestinal intraepithelial lymphocytes. Inflamm Bowel Dis. 2009;15:1526–1536.

    PubMed  Google Scholar 

  67. Kim N, Kunisawa J, Kweon MN, Eog Ji G, Kiyono H. Oral feeding of Bifidobacterium bifidum (BGN4) prevents CD4(+) CD45RB(high) T cell-mediated inflammatory bowel disease by inhibition of disordered T cell activation. Clin Immunol. 2007;123:30–39.

    CAS  PubMed  Google Scholar 

  68. Preising J, Philippe D, Gleinser M, et al. Selection of bifidobacteria based on adhesion and anti-inflammatory capacity in vitro for amelioration of murine colitis. Appl Environ Microbiol. 2010;76:3048–3051.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Philippe D, Heupel E, Blum-Sperisen S, Riedel CU. Treatment with Bifidobacterium bifidum 17 partially protects mice from Th1-driven inflammation in a chemically induced model of colitis. Int J Food Microbiol. 2011;149:45–49.

    CAS  PubMed  Google Scholar 

  70. Philippe D, Favre L, Foata F, et al. Bifidobacterium lactis attenuates onset of inflammation in a murine model of colitis. World J Gastroenterol. 2011;17:459–469.

    PubMed  Google Scholar 

  71. Lindfors K, Blomqvist T, Juuti-Uusitalo K, et al. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol. 2008;152:552–558.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Im E, Choi YJ, Pothoulakis C, Rhee SH. Bacillus polyfermenticus ameliorates colonic inflammation by promoting cytoprotective effects in colitic mice. J Nutr. 2009;139:1848–1854.

    CAS  PubMed  Google Scholar 

  73. Selvam R, Maheswari P, Kavitha P, Ravichandran M, Sas B, Ramchand CN. Effect of Bacillus subtilis PB6, a natural probiotic on colon mucosal inflammation and plasma cytokines levels in inflammatory bowel disease. Indian J Biochem Biophys. 2009;46:79–85.

    CAS  PubMed  Google Scholar 

  74. Foligné B, Dewulf J, Breton J, Claisse O, Lonvaud-Funel A, Pot B. Probiotic properties of non-conventional lactic acid bacteria: immunomodulation by Oenococcus oeni. Int J Food Microbiol. 2010;140:136–145.

    PubMed  Google Scholar 

  75. Hudcovic T, Kolinska J, Klepetar J, et al. Protective effect of Clostridium tyrobutyricum in acute dextran sodium sulphate-induced colitis: differential regulation of tumour necrosis factor-α and interleukin-18 in BALB/c and severe combined immunodeficiency mice. Clin Exp Immunol. 2012;167:356–365.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Foligné B, Dewulf J, Vandekerckove P, Pignède G, Pot B. Probiotic yeasts: anti-inflammatory potential of various non-pathogenic strains in experimental colitis in mice. World J Gastroenterol. 2010;16:2134–2145.

    PubMed  Google Scholar 

  77. Grijó NN, Borra RC, Sdepanian VL. Proinflammatory and anti-inflammatory cytokines present in the acute phase of experimental colitis treated with Saccharomyces boulardii. Dig Dis Sci. 2010;55:2498–2504.

    PubMed  Google Scholar 

  78. Guri AJ, Mohapatra SK, Horne WT II, Hontecillas R, Bassaganya-Riera J. The role of T cell PPAR gamma in mice with experimental inflammatory bowel disease. BMC Gastroenterol. 2010;10:60.

    PubMed Central  PubMed  Google Scholar 

  79. Mohapatra SK, Guri AJ, Climent M, et al. Immunoregulatory actions of epithelial cell PPAR gamma at the colonic mucosa of mice with experimental inflammatory bowel disease. PLoS One. 2010;5:e10215.

    PubMed Central  PubMed  Google Scholar 

  80. Murthy AK, Dubose CN, Banas JA, Coalson JJ, Arulanandam BP. Contribution of polymeric immunoglobulin receptor to regulation of intestinal inflammation in dextran sulfate sodium-induced colitis. J Gastroenterol Hepatol. 2006;21:1372–1380.

    CAS  PubMed  Google Scholar 

  81. Uronis JM, Arthur JC, Keku T, et al. Gut microbial diversity is reduced by the probiotic VSL#3 and correlates with decreased TNBS-induced colitis. Inflamm Bowel Dis. 2011;17:289–297.

    PubMed Central  PubMed  Google Scholar 

  82. Appleyard CB, Cruz ML, Isidro AA, Arthur JC, Jobin C, De Simone C. Pretreatment with the probiotic VSL#3 delays transition from inflammation to dysplasia in a rat model of colitis-associated cancer. Am J Physiol Gastrointest Liver Physiol. 2011;301:G1004–G1013.

    CAS  PubMed  Google Scholar 

  83. Lin HM, Edmunds SJ, Zhu S, Helsby NA, Ferguson LR, Rowan DD. Metabolomic analysis reveals differences in urinary excretion of kiwifruit-derived metabolites in a mouse model of inflammatory bowel disease. Mol Nutr Food Res. 2011;55:1900–1904.

    CAS  PubMed  Google Scholar 

  84. Ward LM, Rauch F, Matzinger MA, Benchimol EI, Boland M, Mack DR. Iliac bone histomorphometry in children with newly diagnosed inflammatory bowel disease. Osteoporos Int. 2010;21:331–337.

    CAS  PubMed  Google Scholar 

  85. Avinash B, Dutta AK, Chacko A. Pediatric inflammatory bowel disease in South India. Indian Pediatr. 2009;46:639–640.

    CAS  PubMed  Google Scholar 

  86. Hébuterne X, Filippi J, Al-Jaouni R, Schneider S. Nutritional consequences and nutrition therapy in Crohn’s disease. Gastroenterol Clin Biol. 2009;33:S235–S244.

    PubMed  Google Scholar 

  87. Vagianos K, Bector S, McConnell J, Bernstein CN. Nutrition assessment of patients with inflammatory bowel disease. JPEN J Parenter Enteral Nutr. 2007;31:311–319.

    CAS  PubMed  Google Scholar 

  88. Benchimol EI, Ward LM, Gallagher JC, et al. Effect of calcium and vitamin D supplementation on bone mineral density in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2007;45:538–545.

    CAS  PubMed  Google Scholar 

  89. Pappa HM, Saslowsky TM, Filip-Dhima R, et al. Efficacy and harms of nasal calcitonin in improving bone density in young patients with inflammatory bowel disease: a randomized, placebo-controlled, double-blind trial. Am J Gastroenterol. 2011;106:1527–1543.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Ardizzone S, Cassinotti A, Bevilacqua M, Clerici M, Porro GB. Vitamin D and inflammatory bowel disease. Vitam Horm. 2011;86:367–377.

    CAS  PubMed  Google Scholar 

  91. Cantorna MT, Munsick C, Bemiss C, Mahon BD. 1,25-Dihydroxycholecalciferol prevents and ameliorates symptoms of experimental murine inflammatory bowel disease. J Nutr. 2000;130:2648–2652.

    CAS  PubMed  Google Scholar 

  92. Cantorna MT. Mechanisms underlying the effect of vitamin D on the immune system. Proc Nutr Soc. 2010;69:286–289.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Laverny G, Penna G, Vetrano S, et al. Efficacy of a potent and safe vitamin D receptor agonist for the treatment of inflammatory bowel disease. Immunol Lett. 2010;131:49–58.

    CAS  PubMed  Google Scholar 

  94. Pappa HM, Grand RJ, Gordon CM. Report on the vitamin D status of adult and pediatric patients with inflammatory bowel disease and its significance for bone health and disease. Inflamm Bowel Dis. 2006;12:1162–1174.

    PubMed  Google Scholar 

  95. Voegtlin M, Vavricka SR, Schoepfer AM, et al. Prevalence of anaemia in inflammatory bowel disease in Switzerland: a cross-sectional study in patients from private practices and university hospitals. J Crohns Colitis. 2010;4:642–648.

    PubMed  Google Scholar 

  96. Gisbert JP, Gomollón F. Common misconceptions in the diagnosis and management of anemia in inflammatory bowel disease. Am J Gastroenterol. 2008;103:1299–1307.

    PubMed  Google Scholar 

  97. Gomollón F, Gisbert JP. Anemia and inflammatory bowel diseases. World J Gastroenterol. 2009;15:4659–4665.

    PubMed  Google Scholar 

  98. Moriconi F, Ahmad G, Ramadori P, et al. Phagocytosis of gadolinium chloride or zymosan induces simultaneous upregulation of hepcidin- and downregulation of hemojuvelin- and Fpn-1-gene expression in murine liver. Lab Invest. 2009;89:1252–1260.

    CAS  PubMed  Google Scholar 

  99. Malik IA, Naz N, Sheikh N, et al. Comparison of changes in gene expression of transferrin receptor-1 and other iron-regulatory proteins in rat liver and brain during acute-phase response. Cell Tissue Res. 2011;344:299–312.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Ramadori P, Sheikh N, Ahmad G, Dudas J, Ramadori G. Hepatic changes of erythropoietin gene expression in a rat model of acute-phase response. Liver Int. 2010;30:55–64.

    CAS  PubMed  Google Scholar 

  101. Moriconi F, Raddatz D, Ho NA, Yeruva S, Dudas J, Ramadori G. Quantitative gene expression of cytokines in peripheral blood leukocytes stimulated in vitro: modulation by the anti-tumor nerosis factor-alpha antibody infliximab and comparison with the mucosal cytokine expression in patients with ulcerative colitis. Transl Res. 2007;150:223–232.

    CAS  PubMed  Google Scholar 

  102. Schröder O, Mickisch O, Seidler U, et al. Intravenous iron sucrose versus oral iron supplementation for the treatment of iron deficiency anemia in patients with inflammatory bowel disease–a randomized, controlled, open-label, multicenter study. Am J Gastroenterol. 2005;100:2503–2509.

    PubMed  Google Scholar 

  103. Sato T, Nakai T, Tamura N, et al. Osteopontin/Eta-1 upregulated in Crohn’s disease regulates the Th1 immune response. Gut. 2005;54:1254–1262.

    CAS  PubMed  Google Scholar 

  104. Agnholt J, Kelsen J, Schack L, Hvas CL, Dahlerup JF, Sørensen ES. Osteopontin, a protein with cytokine-like properties, is associated with inflammation in Crohn’s disease. Scand J Immunol. 2007;65:453–460.

    CAS  PubMed  Google Scholar 

  105. Mishima R, Takeshima F, Sawai T, et al. High plasma osteopontin levels in patients with inflammatory bowel disease. J Clin Gastroenterol. 2007;41:167–172.

    CAS  PubMed  Google Scholar 

  106. Da Silva AP, Pollett A, Rittling SR, Denhardt DT, Sodek J, Zohar R. Exacerbated tissue destruction in DSS-induced acute colitis of OPN-null mice is associated with downregulation of TNF-alpha expression and non-programmed cell death. J Cell Physiol. 2006;208:629–639.

    PubMed  Google Scholar 

  107. Zhong J, Eckhardt ER, Oz HS, Bruemmer D, de Villiers WJ. Osteopontin deficiency protects mice from Dextran sodium sulfate-induced colitis. Inflamm Bowel Dis. 2006;12:790–796.

    PubMed  Google Scholar 

  108. Bayless KJ, Meininger GA, Scholtz JM, Davis GE. Osteopontin is a ligand for the alpha4beta1 integrin. J Cell Sci. 1998;111:1165–1174.

    CAS  PubMed  Google Scholar 

  109. Podolsky KD, Lobb R, King N, et al. Attention of colitis in the cotton-top tamarin by anti-a4 integrin monoclonal antibody. J Clin Invest. 1993;92:372–380.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Hesterberg P, Windsor-Hines D, Briskin M, et al. Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a Gut-Homing Integrin a4b7. Gastroenterology. 1996;111:1373–1380.

    CAS  PubMed  Google Scholar 

  111. Valentini L, Wirth EK, Schweizer U, et al. Circulating adipokines and the protective effects of hyperinsulinemia in inflammatory bowel disease. Nutrition. 2009;25:172–181.

    CAS  PubMed  Google Scholar 

  112. Karmiris K, Koutroubakis IE, Xidakis C, Polychronaki M, Voudouri T, Kouroumalis EA. Circulating levels of leptin, adiponectin, resistin, and ghrelin in inflammatory bowel disease. Inflamm Bowel Dis. 2006;12:100–105.

    PubMed  Google Scholar 

  113. Weigert J, Obermeier F, Neumeier M, et al. Circulating levels of chemerin and adiponectin are higher in ulcerative colitis and chemerin is elevated in Crohn’s disease. Inflamm Bowel Dis. 2010;16:630–637.

    PubMed  Google Scholar 

  114. Dubuquoy L, Rousseaux C, Thuru X, et al. PPARgamma as a new therapeutic target in inflammatory bowel diseases. Gut. 2006;55:1341–1349.

    CAS  PubMed  Google Scholar 

  115. Aoyagi Y, Nagata S, Kudo T, et al. Peroxisome proliferator-activated receptor γ 2 mutation may cause a subset of ulcerative colitis. Pediatr Int. 2010;52:729–734.

    CAS  PubMed  Google Scholar 

  116. Atug O, Tahan V, Eren F, et al. Pro12Ala polymorphism in the peroxisome proliferator-activated receptor-gamma (PPARgamma) gene in inflammatory bowel disease. J Gastrointestin Liver Dis. 2008;17:433–437.

    PubMed  Google Scholar 

  117. Shrestha UK, Karimi O, Crusius JB, et al. Distribution of peroxisome proliferator-activated receptor-gamma polymorphisms in Chinese and Dutch patients with inflammatory bowel disease. Inflamm Bowel Dis. 2010;16:312–319.

    PubMed  Google Scholar 

  118. Woodworth HL, McCaskey SJ, Duriancik DM, et al. Dietary fish oil alters T lymphocyte cell populations and exacerbates disease in a mouse model of inflammatory colitis. Cancer Res. 2010;70:7960–7969.

    CAS  PubMed  Google Scholar 

  119. Ueda Y, Kawakami Y, Kunii D, et al. Elevated concentrations of linoleic acid in erythrocyte membrane phospholipids in patients with inflammatory bowel disease. Nutr Res. 2008;28:239–244.

    CAS  PubMed  Google Scholar 

  120. IBD in EPIC Study Investigators, Tjonneland A, Overvad K, et al. Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case-control study within a European prospective cohort study. Gut. 2009;58:1606–1611.

    PubMed  Google Scholar 

  121. Langmead L, Feakins RM, Goldthorpe S, et al. Randomized, double-blind, placebo-controlled trial of oral aloe vera gel for active ulcerative colitis. Aliment Pharmacol Ther. 2004;19:739–747.

    CAS  PubMed  Google Scholar 

  122. Guri AJ, Evans NP, Hontecillas R, Bassaganya-Riera J. T cell PPARγ is required for the anti-inflammatory efficacy of abscisic acid against experimental IBD. J Nutr Biochem. 2011;22:812–819.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Grozio A, Millo E, Guida L, et al. Functional characterization of a synthetic abscisic acid analog with anti-inflammatory activity on human granulocytes and monocytes. Biochem Biophys Res Commun. 2011;415:696–701.

    CAS  PubMed  Google Scholar 

  124. Sturla L, Fresia C, Guida L, et al. LANCL2 is necessary for abscisic acid binding and signaling in human granulocytes and in rat insulinoma cells. J Biol Chem. 2009;284:28045–28057.

    CAS  PubMed  Google Scholar 

  125. Edmunds SJ, Roy NC, Davy M, et al. Effects of kiwifruit extracts on colonic gene and protein expression levels in IL-10 gene-deficient mice. Br J Nutr. 2011. (Epub ahead of print). doi:10.1017/S0007114511005241.

  126. Bernstein CN. New insights into IBD epidemiology: are there any lessons for treatment? Dig Dis. 2010;28:406–410.

    PubMed  Google Scholar 

  127. Hörmannsperger G, Haller D. Molecular crosstalk of probiotic bacteria with the intestinal immune system: clinical relevance in the context of inflammatory bowel disease. Int J Med Microbiol. 2010;300:63–73.

    PubMed  Google Scholar 

  128. Reiff C, Kelly D. Inflammatory bowel disease, gut bacteria and probiotic therapy. Int J Med Microbiol. 2010;300:25–33.

    CAS  PubMed  Google Scholar 

  129. Claes IJ, Lebeer S, Shen C, et al. Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis. Clin Exp Immunol. 2010;162:306–314.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Seksik P, Dray X, Sokol H, Marteau P. Is there any place for alimentary probiotics, prebiotics or synbiotics, for patients with inflammatory bowel disease? Mol Nutr Food Res. 2008;52:906–912.

    CAS  PubMed  Google Scholar 

  131. Westendorf AM, Gunzer F, Deppenmeier S, et al. Intestinal immunity of Escherichia coli NISSLE 1917: a safe carrier for therapeutic molecules. FEMS Immunol Med Microbiol. 2005;43:373–384.

    CAS  PubMed  Google Scholar 

  132. Caballero-Franco C, Keller K, De Simone C, Chadee K. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2007;292:G315–G322.

    CAS  PubMed  Google Scholar 

  133. Zocco MA, dal Verme LZ, Cremonini F. Efficacy of Lactobacillus GG in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther. 2006;23:1567–1574.

    CAS  PubMed  Google Scholar 

  134. Zeng J, Li YQ, Zuo XL, et al. Clinical trial: effect of active lactic acid bacteria on mucosal barrier function in patients with diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther. 2008;28:994–1002.

    CAS  PubMed  Google Scholar 

  135. Garcia Vilela E, De Lourdes De Abreu Ferrari M, Oswaldo Da Gama Torres H, et al. Influence of Saccharomyces boulardii on the intestinal permeability of patients with Crohn’s disease in remission. Scand J Gastroenterol. 2008;43:842–848.

    PubMed  Google Scholar 

  136. Vetrano S, Correale C, Borroni EM, et al. Colifagina, a novel preparation of 8 lysed bacteria ameliorates experimental colitis. Int J Immunopathol Pharmacol. 2008;21:401–407.

    CAS  PubMed  Google Scholar 

  137. Resta-Lenert SC, Barrett KE. Modulation of intestinal barrier properties by probiotics: role in reversing colitis. Ann NY Acad Sci. 2009;1165:175–182.

    PubMed  Google Scholar 

  138. Chaves S, Perdigon G, de Moreno de LeBlanc A. Yoghurt consumption regulates the immune cells implicated in acute intestinal inflammation and prevents the recurrence of the inflammatory process in a mouse model. J Food Prot. 2011;74:801–811.

    CAS  PubMed  Google Scholar 

  139. Jijon H, Backer J, Diaz H, et al. DNA from probiotic bacteria modulates murine and human epithelial and immune function. Gastroenterology. 2004;126:1358–1373.

    CAS  PubMed  Google Scholar 

  140. Hörmannsperger G, Clavel T, Hoffmann M, et al. Post-translational inhibition of IP-10 secretion in IEC by probiotic bacteria: impact on chronic inflammation. PLoS One. 2009;4:e4365.

    PubMed Central  PubMed  Google Scholar 

  141. Lammers KM, Vergopoulos A, Babel N, et al. Probiotic therapy in the prevention of pouchitis onset: decreased interleukin-1beta, interleukin-8, and interferon-gamma gene expression. Inflamm Bowel Dis. 2005;11:447–454.

    PubMed  Google Scholar 

  142. Håkansson A, Bränning C, Adawi D, et al. Blueberry husks, rye bran and multi-strain probiotics affect the severity of colitis induced by dextran sulphate sodium. Scand J Gastroenterol. 2009;44:1213–1225.

    PubMed  Google Scholar 

  143. Weng M, Walker WA, Sanderson IR. Butyrate regulates the expression of pathogen-triggered IL-8 in intestinal epithelia. Pediatr Res. 2007;62:542–546.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Kovarik JJ, Tillinger W, Hofer J, et al. Impaired anti-inflammatory efficacy of n-butyrate in patients with IBD. Eur J Clin Invest. 2011;41:291–298.

    CAS  PubMed  Google Scholar 

  145. Woo TD, Oka K, Takahashi M, et al. Inhibition of the cytotoxic effect of Clostridium difficile in vitro by Clostridium butyricum MIYAIRI 588 strain. J Med Microbiol. 2011;60:1617–1625.

    CAS  PubMed  Google Scholar 

  146. Segawa S, Fujiya M, Konishi H, et al. Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway. PLoS One. 2011;6:e23278.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Saksena S, Goyal S, Raheja G, et al. Upregulation of P-glycoprotein by probiotics in intestinal epithelial cells and in the dextran sulfate sodium model of colitis in mice. Am J Physiol Gastrointest Liver Physiol. 2011;300:G1115–G1123.

    CAS  PubMed  Google Scholar 

  148. Kanauchi O, Mitsuyama K, Andoh A. The therapeutic impact of manipulating microbiota in inflammatory bowel disease. Curr Pharm Des. 2009;15:2074–2086.

    CAS  PubMed  Google Scholar 

  149. Harding SV, Adegoke OA, Fraser KG, et al. Maintaining adequate nutrition, not probiotic administration, prevents growth stunting and maintains skeletal muscle protein synthesis rates in a piglet model of colitis. Pediatr Res. 2010;67:268–273.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Palileo C, Kaunitz JD. Gastrointestinal defense mechanisms. Curr Opin Gastroenterol. 2011;27:543–548.

    CAS  PubMed  Google Scholar 

  151. Macfarlane GT, Blackett KL, Nakayama T, Steed H, Macfarlane S. The gut microbiota in inflammatory bowel disease. Curr Pharm Des. 2009;15:1528–1536.

    CAS  PubMed  Google Scholar 

  152. Nguyen CA, Akiba Y, Kaunitz JD. Recent advances in gut nutrient chemosensing. Curr Med Chem. 2012;19:28–34.

    CAS  PubMed  Google Scholar 

  153. Beck IT. Laboratory assessment of inflammatory bowel disease. Dig Dis Sci. 1987;32:26S–41S.

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela G. Neuman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nanau, R.M., Neuman, M.G. Nutritional and Probiotic Supplementation in Colitis Models. Dig Dis Sci 57, 2786–2810 (2012). https://doi.org/10.1007/s10620-012-2284-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2284-3

Keywords

Navigation