Skip to main content

Advertisement

Log in

Reduced Diversity and Imbalance of Fecal Microbiota in Patients with Ulcerative Colitis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Clinical observations and experimental colitis models have indicated the importance of intestinal bacteria in the etiology of ulcerative colitis (UC), but a causative bacterial agent has not been identified.

Aim

To determine how intestinal bacteria are associated with UC, fecal microbiota and other components were compared for UC patients and healthy adults.

Methods

Fresh feces were collected from 48 UC patients. Fecal microbiota were analyzed by use of terminal-restriction fragment length polymorphism (T-RFLP), real-time PCR, and culture. The concentrations of organic acids, indole, and ammonia, and pH and moisture, which are indicators of the intestinal environment, were measured and compared with healthy control data.

Results

T-RFLP data divided the UC patients into four clusters; one cluster was obtained for healthy subjects. The diversity of fecal microbiota was significantly lower in UC patients. There were significantly fewer Bacteroides and Clostridium subcluster XIVab, and the amount of Enterococcus was higher in UC patients than in healthy subjects. The fecal concentration of organic acids was significantly lower in UC patients who were in remission.

Conclusion

UC patients have imbalances in the intestinal environment—less diversity of fecal microbiota, lower levels of major anaerobic bacteria (Bacteroides and Clostridium subcluster XIVab), and a lower concentration of organic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Asakura K, Nishiwaki Y, Inoue N, et al. Prevalence of ulcerative colitis and Crohn’s disease in Japan. J Gastroenterol. 2009;44:659–665.

    Article  PubMed  Google Scholar 

  2. Kuhn R, Lohler J, Rennick D, et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–274.

    Article  CAS  PubMed  Google Scholar 

  3. Sadlack B, Merz H, Schorle H, et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993;75:253–261.

    Article  CAS  PubMed  Google Scholar 

  4. Nomura T, Ohkusa T, Okayasu I, et al. Mucosa-associated bacteria in ulcerative colitis before and after antibiotic combination therapy. Aliment Pharmacol Ther. 2005;21:1017–1027.

    Article  CAS  PubMed  Google Scholar 

  5. Kuehbacher T, Rehman A, Lepage P, et al. Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease. J Med Microbiol. 2008;57:1569–1576.

    Article  CAS  PubMed  Google Scholar 

  6. Rowan FE, Docherty NG, Coffey JC, et al. Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Br J Surg. 2009;96:151–158.

    Article  CAS  PubMed  Google Scholar 

  7. Asano K, Matsushita T, Umeno J, et al. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat Genet. 2009;41:1325–1329.

    Article  CAS  PubMed  Google Scholar 

  8. The UK IBD Genetics Consortium and the Wellcome Trust Case Control Consortium 2. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat Genet. 2009;41:1330–1334.

    Article  Google Scholar 

  9. Mawdsley JE, Ramptom DS. Psychological stress in IBD: new insight into pathogenic and therapeutic implications. Gut. 2005;54:1481–1491.

    Article  CAS  PubMed  Google Scholar 

  10. Kim SC, Tonkonogy SL, Albright CA, et al. Variable phenotypes of enterocolitis in interleukin 10—deficient mice monoassociated with two different commensal bacteria. Gastroenterology. 2005;128:891–906.

    Article  CAS  PubMed  Google Scholar 

  11. Waidmann M, Bechtold O, Frick JS, et al. Bacteroides vulgatus protects against Escherichia coli—induced colitis in gnotobiotic interleukin-2—deficient mice. Gastroenterology. 2003;125:162–177.

    Article  PubMed  Google Scholar 

  12. Matsuda H, Fujiyama Y, Ando A, et al. Characterization of antibody responses against rectal mucosaassociated bacterial flora in patients with ulcerative colitis. J Gastroenterol Hepatol. 2000;15:61–68.

    Article  CAS  PubMed  Google Scholar 

  13. Gibson GR, Cumming JH, McFarlane GT. Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol Lett. 1991;86:103–112.

    Article  CAS  Google Scholar 

  14. Pitcher MCL, Cummings JH. Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut. 1996;39:1–4.

    Article  CAS  PubMed  Google Scholar 

  15. Ohkusa T, Sato N, Ogihara T, Morita K, et al. Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody. J Gastroenterol Hepatol. 2002;17:849–853.

    Article  PubMed  Google Scholar 

  16. Suau A, Bonnet R, Sutren M, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol. 1999;65:4799–4807.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Tap J, Mondot S, Levenez F, et al. Towards the human intestinal microbiota phylogenic core. Environ Microbiol. 2009;11:2574–2584.

    Article  PubMed  Google Scholar 

  18. Hattori M, Taylor TD. The human intestinal microbiome: a new frontier of human biology. DNA Res. 2009;16:1–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Wächtershäuser A, Stein J. Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr. 2000;39:164–171.

    Article  PubMed  Google Scholar 

  20. Hamer HM, Jonkers D, Venema K, et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27:104–119.

    Article  CAS  PubMed  Google Scholar 

  21. Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136:65–80.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292:1115–1118.

    Article  CAS  PubMed  Google Scholar 

  23. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81:1031–1064.

    CAS  PubMed  Google Scholar 

  24. Cavaglieri CR, Nishiyama A, Fernandes LC, et al. Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes. Life Sci. 2003;73:1683–1690.

    Article  CAS  PubMed  Google Scholar 

  25. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–323.

    Article  CAS  PubMed  Google Scholar 

  26. Hooper LV, Macpherson AJ. Immune adaptation that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10:159–169.

    Article  CAS  PubMed  Google Scholar 

  27. Lichtiger S, Present DH, Kornbluth A, et al. Cyclosporine in severe ulcerative colitis refractory to steroid therapy. N Engl J Med. 1994;330:1841–1845.

    Article  CAS  PubMed  Google Scholar 

  28. Nemoto H, Ikata K, Arimochi H, et al. Effects of fermented brown rice on the intestinal environments in healthy adult. J Med Invest. 2011;58:235–245.

    Article  PubMed  Google Scholar 

  29. Mitsuoka T, Sega T, Yamamoto S. Improved methodology of qualitative and quantitative analysis of the intestinal flora of man and animals. Zentralbl Bakteriol Orig. 1965;195:455–469. (in German).

    CAS  PubMed  Google Scholar 

  30. Morita H, Kuwahara T, Ohshima K, et al. An improved DNA isolation method for metagenomic analysis of the microbial flora of the human intestine. Microbes Environ. 2007;22:214–222.

    Article  Google Scholar 

  31. Sakamoto M, Hayashi H, Benno Y. Terminal restriction fragment length polymorphism analysis for human fecal microbiota and its application for analysis of complex bifidobacterial communities. Microbiol Immunol. 2003;47:133–142.

    Article  CAS  PubMed  Google Scholar 

  32. Matsuki T, Watanabe K, Fujimoto J, et al. Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol. 2002;68:5445–5451.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Fite A, Macfarlane GT, Cummings JH, et al. Identification and quantitation of mucosal and faecal desulfovibrios using real time polymerase chain reaction. Gut. 2004;53:523–529.

    Article  CAS  PubMed  Google Scholar 

  34. Rinttilä T, Kassinen A, Malinen E, et al. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol. 2004;97:1166–1177.

    Article  PubMed  Google Scholar 

  35. Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol. 2004;70:6459–6465.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Layton A, McKay L, Williams D, et al. Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol. 2006;72:4214–4224.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Shioiri T, Yahagi K, Nakayama S, et al. The effects of a symbiotic fermented milk beverage containing Lactobacillus casei strain Shirota and transgalactosylated oligosaccharides on defecation frequency, intestinal microflora, organic acid concentrations, and putrefactive metabolites of sub-optimal health state volunteers: a randomized placebo-controlled cross-over study. Biosci Microflora. 2006;25:137–146.

    CAS  Google Scholar 

  38. Greenstein RJ, Su L, Shahidi A, et al. On the action of 5-amino-salicylic acid and sulfapyridine on M avium including subspecies paratuberculosis. PLoS ONE. 2007;2:e516.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Round JL, O’Connell RM, Mazmanian SK. Coordination of tolerogenic immune responses by the commensal microbiota. J Autoimmun. 2010;34:J220–J225.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ando A, Sakata S, Koizumi Y, et al. Terminal restriction fragment length polymorphism analysis of the diversity of fecal microbiota in patients with ulcerative colitis. Inflamm Bowel Dis. 2007;13:955–962.

    Article  Google Scholar 

  41. Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55:205–211.

    Article  CAS  PubMed  Google Scholar 

  42. Nishikawa J, Kudo T, Sakata S, et al. Diversity of mucosa-associated microbiota in active and inactive ulcerative colitis. Scand J Gastroenterol. 2009;44:180–186. (abstract).

    Article  CAS  PubMed  Google Scholar 

  43. Martinez C, Antolin M, Santos J, et al. Unstable composition of the fecal microbiota in ulcerative colitis during clinical remission. Am J Gastroenterol. 2008;103:643–648.

    Article  PubMed  Google Scholar 

  44. Greenstein RJ, Su L, Juste RA, et al. On the action of cyclosporine A, rapamycin and tacrolimus on M avium including subspecies paratuberculosis. PLoS ONE. 2008;3:e2496.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Finegold SM, John SS, Vu AW, et al. In vitro activity of ramoplanin and comparator drugs against anaerobic intestinal bacteria from the perspective of potential utility in pathology involving bowel flora. Anaerobe. 2004;10:205–211.

    Article  CAS  PubMed  Google Scholar 

  46. Hoffmann M, Kim SC, Sartor RB, et al. Enterococcus faecalis strains differentially regulate Alix/AIP1 protein expression and ERK 1/2 activation in intestinal epithelial cells in the context of chronic experimental colitis. J Proteome Res. 2009;8:1183–1192.

    Article  CAS  PubMed  Google Scholar 

  47. Balish E, Warner T. Enterococcus faecalis induces inflammatory bowel diseases in interleukin-10 knockout mice. Am J Pathol. 2002;160:2253–2257.

    Article  CAS  PubMed  Google Scholar 

  48. Ishikawa H, Akedo I, Umesaki Y, et al. Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis. J Am Coll Nutr. 2002;22:56–63.

    Article  Google Scholar 

  49. Furrie E, Macfarlane S, Kennedy A, et al. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with ulcerative colitis: a randomized controlled pilot trial. Gut. 2005;54:242–249.

    Article  CAS  PubMed  Google Scholar 

  50. Kato K, Misuno S, Umesaki Y, et al. Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther. 2004;20:1133–1141.

    Article  CAS  PubMed  Google Scholar 

  51. Pitcher MCL, Beatty ER, Cummings JH. The contribution of sulfate-reducing bacteria and 5-aminosalicylic acid to fecal sulfide in patients with ulcerative colitis. Gut. 2000;46:64–72.

    Article  CAS  PubMed  Google Scholar 

  52. Louis P, Scott KP, Duncan SH, et al. Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol. 2007;102:1197–1208.

    Article  CAS  PubMed  Google Scholar 

  53. Neish AS. Microbes in gastrointestinal health and disease. Gastroenterol. 2009;136:64–80.

    Article  Google Scholar 

  54. Bourriaud C, Robins RJ, Martin L, et al. Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J Appl Microbiol. 2005;99:201–212.

    Article  CAS  PubMed  Google Scholar 

  55. Takaishi H, Matsuki T, Nakazawa A, et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol. 2008;298:463–472.

    Article  CAS  PubMed  Google Scholar 

  56. Marchesi JR, Holmes E, Khan F, et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res. 2007;6:546–551.

    Article  CAS  PubMed  Google Scholar 

  57. Joossens M, Huys G, Cnochaert M, et al. Dysbiosis of the fecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut. 2011;60:631–637.

    Article  PubMed  Google Scholar 

  58. Geypens B, Claus D, Evenepoel P, et al. Influence of dietary protein supplements on the formation of bacterial metabolites in the colon. Gut. 1997;41:70–76.

    Article  CAS  PubMed  Google Scholar 

  59. Blachier E, Mariotti F, Huneau J, et al. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids. 2007;33:547–562.

    Article  CAS  PubMed  Google Scholar 

  60. Khoruts A, Dicksved J, Jansson JK, et al. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol. 2010;44:354–360.

    PubMed  Google Scholar 

  61. Borody TJ, Warren EF, Leis S, et al. Treatment of ulcerative colitis using fecal bacteriotherapy. J Clin Gastroenterol. 2003;37:42–47.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We express our appreciation to Dr Masako Sei for helpful advice on the statistical analysis, Dr Chiho Goto for instructive advice on the analysis of dietary habits in the subjects, Mr Shigeo Misawa for technical support with the T-RFLP analysis, Mr Hirofumi Niki for technical support with quantification of organic acids by gas chromatography, and Miss Saori Nagae and Miss Azusa Matsumoto for counting the number of Gram-stained bacteria.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Kataoka.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemoto, H., Kataoka, K., Ishikawa, H. et al. Reduced Diversity and Imbalance of Fecal Microbiota in Patients with Ulcerative Colitis. Dig Dis Sci 57, 2955–2964 (2012). https://doi.org/10.1007/s10620-012-2236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2236-y

Keywords

Navigation