Skip to main content

Advertisement

Log in

Abnormal Genetic and Epigenetic Changes in Signal Transducer and Activator of Transcription 4 in the Pathogenesis of Inflammatory Bowel Diseases

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

Changes in the expression of signal transducer and activator of transcription 4 (STAT4) contribute to the development of a variety of autoimmune diseases including inflammatory bowel diseases (IBDs). Moreover, epigenetic modifications, including DNA methylation, are considered a basis for differentiation of T helper cells and regulation of cytokines. In this study, we investigated the methylation status of STAT4 gene in IBD patients and the associations between its genetic and epigenetic alterations in IBD patients.

Methods

Blood and colonic mucosa samples were obtained from Korean patients with IBD and healthy controls. Peripheral blood mononuclear cells (PBMCs) were isolated, and total RNA and genomic DNA were isolated from the PBMCs and colon mucosa tissues. The mRNA level and DNA methylation status of the promoter were determined by real-time RT-PCR and pyrosequencing, respectively. The chosen SNPs (rs11889341, rs7574865, rs8179673, rs6752770, rs925847, rs10168266, rs10181656, and rs11685878) were genotyped using the TaqMan nuclease assay.

Results

Elevated expression of STAT4 was observed in the colonic mucosa and PBMCs of IBD patients. IBD patients showed a lower degree of methylation of the STAT4 promoter than did the healthy controls. Moreover, a significant correlation between risk alleles and methylation status at −172 of the STAT4 promoter was observed, and mRNA levels of STAT4 in IBD patients were correlated inversely with the T-risk allele (rs7574865).

Conclusions

Our data demonstrated that the DNA methylation status of STAT4 is associated with genetic polymorphisms, providing insights into the interactions between genetic and epigenetic aberrances in STAT4 that contribute to the development of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chamaillard M, Philpott D, Girardin SE, et al. Gene-environment interaction modulated by allelic heterogeneity in inflammatory diseases. Proc Natl Acad Sci USA. 2003;100:3455–3460.

    Article  PubMed  CAS  Google Scholar 

  2. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–434.

    Article  PubMed  CAS  Google Scholar 

  3. Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40:955–962.

    Article  PubMed  CAS  Google Scholar 

  4. Anderson CA, Boucher G, Lees CW, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011;43:246–252.

    Article  PubMed  CAS  Google Scholar 

  5. Franke A, McGovern DP, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–1125.

    Article  PubMed  CAS  Google Scholar 

  6. Budarf ML, Labbe C, David G, Rioux JD. GWA studies: rewriting the story of IBD. Trends Genet. 2009;25:137–146.

    Article  PubMed  CAS  Google Scholar 

  7. Abelson AK, Delgado-Vega AM, Kozyrev SV, et al. STAT4 associates with systemic lupus erythematosus through two independent effects that correlate with gene expression and act additively with IRF5 to increase risk. Ann Rheum Dis. 2009;68:1746–1753.

    Article  PubMed  CAS  Google Scholar 

  8. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128:669–681.

    Article  PubMed  CAS  Google Scholar 

  9. Moss TJ, Wallrath LL. Connections between epigenetic gene silencing and human disease. Mutat Res. 2007;618:163–174.

    Article  PubMed  CAS  Google Scholar 

  10. Shames DS, Minna JD, Gazdar AF. DNA methylation in health, disease, and cancer. Curr Mol Med. 2007;7:85–102.

    Article  PubMed  CAS  Google Scholar 

  11. Lin Z, Hegarty JP, Cappel JA, et al. Identification of disease-associated DNA methylation in intestinal tissues from patients with inflammatory bowel disease. Clin Genet. 2011;80:59–67.

    Article  PubMed  CAS  Google Scholar 

  12. Tahara T, Shibata T, Nakamura M, et al. Effect of MDR1 gene promoter methylation in patients with ulcerative colitis. Int J Mol Med. 2009;23:521–527.

    Article  PubMed  CAS  Google Scholar 

  13. Sigurdsson S, Nordmark G, Garnier S, et al. A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5. Hum Mol Genet. 2008;17:2868–2876.

    Article  PubMed  CAS  Google Scholar 

  14. Yan C, Boyd DD. Histone H3 acetylation and H3 K4 methylation define distinct chromatin regions permissive for transgene expression. Mol Cell Biol. 2006;26:6357–6371.

    Article  PubMed  CAS  Google Scholar 

  15. Korman BD, Kastner DL, Gregersen PK, Remmers EF. STAT4: genetics, mechanisms, and implications for autoimmunity. Curr Allergy Asthma Rep. 2008;8:398–403.

    Article  PubMed  CAS  Google Scholar 

  16. Mathur AN, Chang HC, Zisoulis DG, et al. Stat3 and Stat4 direct development of IL-17-secreting Th cells. J Immunol. 2007;178:4901–4907.

    PubMed  CAS  Google Scholar 

  17. Kaplan MH. STAT4: a critical regulator of inflammation in vivo. Immunol Res. 2005;31:231–242.

    Article  PubMed  CAS  Google Scholar 

  18. Jacob CO, Zang S, Li L, et al. Pivotal role of Stat4 and Stat6 in the pathogenesis of the lupus-like disease in the New Zealand mixed 2328 mice. J Immunol. 2003;171:1564–1571.

    PubMed  CAS  Google Scholar 

  19. Finnegan A, Grusby MJ, Kaplan CD, et al. IL-4 and IL-12 regulate proteoglycan-induced arthritis through Stat-dependent mechanisms. J Immunol. 2002;169:3345–3352.

    PubMed  CAS  Google Scholar 

  20. Mo C, Chearwae W, O’Malley JT, et al. Stat4 isoforms differentially regulate inflammation and demyelination in experimental allergic encephalomyelitis. J Immunol. 2008;181:5681–5690.

    PubMed  CAS  Google Scholar 

  21. O’Malley JT, Eri RD, Stritesky GL, et al. STAT4 isoforms differentially regulate Th1 cytokine production and the severity of inflammatory bowel disease. J Immunol. 2008;181:5062–5070.

    PubMed  Google Scholar 

  22. Remmers EF, Plenge RM, Lee AT, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 2007;357:977–986.

    Article  PubMed  CAS  Google Scholar 

  23. Mudter J, Weigmann B, Bartsch B, et al. Activation pattern of signal transducers and activators of transcription (STAT) factors in inflammatory bowel diseases. Am J Gastroenterol. 2005;100:64–72.

    Article  PubMed  CAS  Google Scholar 

  24. Pang YH, Zheng CQ, Yang XZ, Zhang WJ. Increased expression and activation of IL-12-induced Stat4 signaling in the mucosa of ulcerative colitis patients. Cell Immunol. 2007;248:115–120.

    Article  PubMed  CAS  Google Scholar 

  25. Moon CM, Cheon JH, Kim SW, et al. Association of signal transducer and activator of transcription 4 genetic variants with extra-intestinal manifestations in inflammatory bowel disease. Life Sci. 2010;86:661–667.

    Article  PubMed  CAS  Google Scholar 

  26. Pykalainen M, Kinos R, Valkonen S, et al. Association analysis of common variants of STAT6, GATA3, and STAT4 to asthma and high serum IgE phenotypes. J Allergy Clin Immunol. 2005;115:80–87.

    Article  PubMed  Google Scholar 

  27. Korman BD, Alba MI, Le JM, et al. Variant form of STAT4 is associated with primary Sjogren’s syndrome. Genes Immun. 2008;9:267–270.

    Article  PubMed  CAS  Google Scholar 

  28. Lennard-Jones JE. Classification of inflammatory bowel disease. Scand J Gastroenterol Suppl. 1989;170:2–6; discussion 16–19.

    Google Scholar 

  29. Podolsky DK. Inflammatory bowel disease (1). N Engl J Med. 1991;325:928–937.

    Article  PubMed  CAS  Google Scholar 

  30. Cheon JH, Kim ES, Shin SJ, et al. Development and validation of novel diagnostic criteria for intestinal Behcet’s disease in Korean patients with ileocolonic ulcers. Am J Gastroenterol. 2009;104:2492–2499.

    Article  PubMed  Google Scholar 

  31. Glas J, Seiderer J, Nagy M, et al. Evidence for STAT4 as a common autoimmune gene: rs7574865 is associated with colonic Crohn’s disease and early disease onset. PLoS ONE. 2010;5:e10373.

    Article  PubMed  Google Scholar 

  32. Kobayashi S, Ikari K, Kaneko H, et al. Association of STAT4 with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in the Japanese population. Arthritis Rheum. 2008;58:1940–1946.

    Article  PubMed  Google Scholar 

  33. Taylor KE, Remmers EF, Lee AT, et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet. 2008;4:e1000084.

    Article  PubMed  Google Scholar 

  34. Lee HS, Remmers EF, Le JM, Kastner DL, Bae SC, Gregersen PK. Association of STAT4 with rheumatoid arthritis in the Korean population. Mol Med. 2007;13:455–460.

    PubMed  CAS  Google Scholar 

  35. Thierfelder WE, van Deursen JM, Yamamoto K, et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature. 1996;382:171–174.

    Article  PubMed  CAS  Google Scholar 

  36. Neurath MF. IL-23: a master regulator in Crohn disease. Nat Med. 2007;13:26–28.

    Article  PubMed  CAS  Google Scholar 

  37. Wirtz S, Finotto S, Kanzler S, et al. Cutting edge: chronic intestinal inflammation in STAT-4 transgenic mice: characterization of disease and adoptive transfer by TNF- plus IFN-gamma-producing CD4+ T cells that respond to bacterial antigens. J Immunol. 1999;162:1884–1888.

    PubMed  CAS  Google Scholar 

  38. Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007;8:345–350.

    Article  PubMed  CAS  Google Scholar 

  39. Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L, O’Shea JJ. Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev. 2004;202:139–156.

    Article  PubMed  CAS  Google Scholar 

  40. Lovato P, Brender C, Agnholt J, et al. Constitutive STAT3 activation in intestinal T cells from patients with Crohn’s disease. J Biol Chem. 2003;278:16777–16781.

    Article  PubMed  CAS  Google Scholar 

  41. Rueda B, Broen J, Simeon C, et al. The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum Mol Genet. 2009;18:2071–2077.

    Article  PubMed  CAS  Google Scholar 

  42. Lee HS, Park H, Yang S, Kim D, Park Y. STAT4 polymorphism is associated with early-onset type 1 diabetes, but not with late-onset type 1 diabetes. Ann N Y Acad Sci. 2008;1150:93–98.

    Article  PubMed  CAS  Google Scholar 

  43. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–1093.

    Article  PubMed  CAS  Google Scholar 

  44. Jones B, Chen J. Inhibition of IFN-gamma transcription by site-specific methylation during T helper cell development. EMBO J. 2006;25:2443–2452.

    Article  PubMed  CAS  Google Scholar 

  45. Nimmo ER, Prendergast JG, Aldhous MC et al. Genome-wide methylation profiling in Crohn’s disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflammatory Bowel Diseases. 2011.

  46. Kariuki SN, Kirou KA, MacDermott EJ, Barillas-Arias L, Crow MK, Niewold TB. Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. J Immunol. 2009;182:34–38.

    PubMed  CAS  Google Scholar 

  47. Shin HJ, Park HY, Jeong SJ, et al. STAT4 expression in human T cells is regulated by DNA methylation but not by promoter polymorphism. J Immunol. 2005;175:7143–7150.

    PubMed  CAS  Google Scholar 

  48. Zou B, Chim CS, Zeng H, et al. Correlation between the single-site CpG methylation and expression silencing of the XAF1 gene in human gastric and colon cancers. Gastroenterology. 2006;131:1835–1843.

    Article  PubMed  CAS  Google Scholar 

  49. Bell O, Tiwari VK, Thoma NH, Schubeler D. Determinants and dynamics of genome accessibility. Nat Rev Genet. 2011;12:554–564.

    Article  PubMed  CAS  Google Scholar 

  50. Remoli ME, Ragimbeau J, Giacomini E, et al. NF-{kappa}B is required for STAT-4 expression during dendritic cell maturation. J Leukoc Biol. 2007;81:355–363.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the 2009 Good Health R&D Project, Ministry of Health and Welfare, Republic of Korea (grant number A084943), and from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant number 2009-0069149), and a faculty research grant from Yeonsei University College of Medicine for 2010 (grant number 6-2010-0021). We would like to thank the blood donors for their contribution to this study.

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Hee Cheon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.W., Kim, E.S., Moon, C.M. et al. Abnormal Genetic and Epigenetic Changes in Signal Transducer and Activator of Transcription 4 in the Pathogenesis of Inflammatory Bowel Diseases. Dig Dis Sci 57, 2600–2607 (2012). https://doi.org/10.1007/s10620-012-2199-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2199-z

Keywords

Navigation